[A & I plus PDF only]
COPYRIGHT: © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2013
Abstract
The influence of stratospheric ozone on the interannual variability and trends in tropospheric ozone is evaluated between 30 and 90° N from 1990-2009 using ozone measurements and a global chemical transport model, the Community Atmospheric Model with chemistry (CAM-chem). Long-term measurements from ozonesondes, at 150 and 500 hPa, and the Measurements of OZone and water vapour by in-service Airbus aircraft programme (MOZAIC), at 500 hPa, are analyzed over Japan, Canada, the Eastern US and Northern and Central Europe. The measurements generally emphasize northern latitudes, although the simulation suggests that measurements over the Canadian, Northern and Central European regions are representative of the large-scale interannual ozone variability from 30 to 90° N at 500 hPa. CAM-chem is run with input meteorology from the National Center for Environmental Prediction; a tagging methodology is used to identify the stratospheric contribution to tropospheric ozone concentrations. A variant of the synthetic ozone tracer (synoz) is used to represent stratospheric ozone. Both the model and measurements indicate that on large spatial scales stratospheric interannual ozone variability drives significant tropospheric variability at 500 hPa and the surface. In particular, the simulation and the measurements suggest large stratospheric influence at the surface sites of Mace Head (Ireland) and Jungfraujoch (Switzerland) as well as many 500 hPa measurement locations. Both the measurements and simulation suggest the stratosphere has contributed to tropospheric ozone trends. In many locations between 30-90° N 500 hPa ozone significantly increased from 1990-2000, but has leveled off since (from 2000-2009). The simulated global ozone budget suggests global stratosphere-troposphere exchange increased in 1998-1999 in association with a global ozone anomaly. Discrepancies between the simulated and measured ozone budget include a large underestimation of measured ozone variability and discrepancies in long-term stratospheric ozone trends. This suggests the need for more sophisticated simulations including better representations of stratospheric chemistry and circulation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer