Full Text

Turn on search term navigation

© 2007 Watase et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Watase K, Gatchel JR, Sun Y, Emamian E, Atkinson R, et al. (2007) Lithium Therapy Improves Neurological Function and Hippocampal Dendritic Arborization in a Spinocerebellar Ataxia Type 1 Mouse Model. PLoS Med 4(5): e182. doi:10.1371/journal.pmed.0040182

Abstract

Background

Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disorder characterized by progressive motor and cognitive dysfunction. Caused by an expanded polyglutamine tract in ataxin 1 (ATXN1), SCA1 pathogenesis involves a multifactorial process that likely begins with misfolding of ATXN1, which has functional consequences on its interactions, leading to transcriptional dysregulation. Because lithium has been shown to exert neuroprotective effects in a variety of conditions, possibly by affecting gene expression, we tested the efficacy of lithium treatment in a knock-in mouse model of SCA1 (Sca1154Q/2Q mice) that replicates many features of the human disease.

Methods and Findings

Sca1154Q/2Q mice and their wild-type littermates were fed either regular chow or chow that contained 0.2% lithium carbonate. Dietary lithium carbonate supplementation resulted in improvement of motor coordination, learning, and memory in Sca1154Q/2Q mice. Importantly, motor improvement was seen when treatment was initiated both presymptomatically and after symptom onset. Neuropathologically, lithium treatment attenuated the reduction of dendritic branching in mutant hippocampal pyramidal neurons. We also report that lithium treatment restored the levels of isoprenylcysteine carboxyl methyltransferase (Icmt; alternatively, Pccmt), down-regulation of which is an early marker of mutant ATXN1 toxicity.

Conclusions

The effect of lithium on a marker altered early in the course of SCA1 pathogenesis, coupled with its positive effect on multiple behavioral measures and hippocampal neuropathology in an authentic disease model, make it an excellent candidate treatment for human SCA1 patients.

Details

Title
Lithium Therapy Improves Neurological Function and Hippocampal Dendritic Arborization in a Spinocerebellar Ataxia Type 1 Mouse Model
Author
Watase, Kei; Gatchel, Jennifer R; Sun, Yaling; Emamian, Effat; Atkinson, Richard; Richman, Ronald; Mizusawa, Hidehiro; Orr, Harry T; Shaw, Chad; Zoghbi, Huda Y
Pages
e182
Section
Research Article
Publication year
2007
Publication date
May 2007
Publisher
Public Library of Science
ISSN
15491277
e-ISSN
15491676
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1288083924
Copyright
© 2007 Watase et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Watase K, Gatchel JR, Sun Y, Emamian E, Atkinson R, et al. (2007) Lithium Therapy Improves Neurological Function and Hippocampal Dendritic Arborization in a Spinocerebellar Ataxia Type 1 Mouse Model. PLoS Med 4(5): e182. doi:10.1371/journal.pmed.0040182