Full text

Turn on search term navigation

© 2010 Andrade et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Andrade BB, Reis-Filho A, Souza-Neto SM, Raffaele-Netto I, Camargo LMA, et al. (2010) Plasma Superoxide Dismutase-1 as a Surrogate Marker of Vivax Malaria Severity. PLoS Negl Trop Dis 4(4): e650. doi:10.1371/journal.pntd.0000650

Abstract

Background

Severe outcomes have been described for both Plasmodium falciparum and P. vivax infections. The identification of sensitive and reliable markers of disease severity is fundamental to improving patient care. An intense pro-inflammatory response with oxidative stress and production of reactive oxygen species is present in malaria. Inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and antioxidant agents such as superoxide dismutase-1 (SOD-1) are likely candidate biomarkers for disease severity. Here we tested whether plasma levels of SOD-1 could serve as a biomarker of severe vivax malaria.

Methodology/Principal Findings

Plasma samples were obtained from residents of the Brazilian Amazon with a high risk for P. vivax transmission. Malaria diagnosis was made by both microscopy and nested PCR. A total of 219 individuals were enrolled: non-infected volunteers (n = 90) and individuals with vivax malaria: asymptomatic (n = 60), mild (n = 50) and severe infection (n = 19). SOD-1 was directly associated with parasitaemia, plasma creatinine and alanine amino-transaminase levels, while TNF-alpha correlated only with the later enzyme. The predictive power of SOD-1 and TNF-alpha levels was compared. SOD-1 protein levels were more effective at predicting vivax malaria severity than TNF-alpha. For discrimination of mild infection, elevated SOD-1 levels showed greater sensitivity than TNF-alpha (76% vs. 30% respectively; p<0.0001), with higher specificity (100% vs. 97%; p<0.0001). In predicting severe vivax malaria, SOD-1 levels exhibited higher sensitivity than TNF-alpha (80% vs. 56%, respectively; p<0.0001; likelihood ratio: 7.45 vs. 3.14; p<0.0001). Neither SOD-1 nor TNF-alpha could discriminate P. vivax infections from those caused by P. falciparum.

Conclusion

SOD-1 is a powerful predictor of disease severity in individuals with different clinical presentations of vivax malaria.

Details

Title
Plasma Superoxide Dismutase-1 as a Surrogate Marker of Vivax Malaria Severity
Author
Andrade, Bruno B; Reis-Filho, Antonio; Souza-Neto, Sebastião Martins; Raffaele-Netto, Imbroinise; Camargo, Luis MA; Barral, Aldina; Barral-Netto, Manoel
Pages
e650
Section
Research Article
Publication year
2010
Publication date
Apr 2010
Publisher
Public Library of Science
ISSN
19352727
e-ISSN
19352735
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1288101388
Copyright
© 2010 Andrade et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Andrade BB, Reis-Filho A, Souza-Neto SM, Raffaele-Netto I, Camargo LMA, et al. (2010) Plasma Superoxide Dismutase-1 as a Surrogate Marker of Vivax Malaria Severity. PLoS Negl Trop Dis 4(4): e650. doi:10.1371/journal.pntd.0000650