Citation: Rappocciolo G, Piazza P, Fuller CL, Reinhart TA, Watkins SC, et al. (2006) Correction: DC-SIGN on B Lymphocytes Is Required for Transmission of HIV-1 to T Lymphocytes. PLoS Pathog 2(8): e88. doi:10.1371/journal.ppat.0020088
Published: August 25, 2006
Copyright: © 2006 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In PLoS Pathogens, volume 2, issue 7: DOI: 10.1371/journal.ppat.0020070
Page 3, column 1, line 3 should have included this reference for the Raji-DC-SIGN cells:
Wu L, Martin TD, Carrington M, KewalRamani VN (2004) Raji B cells, misidentified as THP-1 cells, stimulate DC-SIGN-mediated HIV transmission. Virology 318: 17-23.
The Acknowledgments should have included a thank you to V. N. KewalRamani (National Cancer Institute) for the Raji-DC-SIGN cells.
Wong P, Pamer EG (2003) CD8 T-cell responses to infectious pathogens. Annu Rev Immunol 21: 29-70. Find this article online
Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, et al. (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274: 94-96. Find this article online
Klenerman P, Cerundolo V, Dunbar PR (2002) Tracking T cells with tetramers: New tales from new tools. Nat Rev Immunol 2: 263-272. Find this article online
Serbina N, Pamer EG (2003) Quantitative studies of CD8+ T-cell responses during microbial infection. Curr Opin Immunol 15: 436-442. Find this article online
Lauvau G, Vijh S, Kong P, Horng T, Kerksiek K, et al. (2001) Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294: 1735-1739. Find this article online
Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, et al. (2003) Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4: 225-234. Find this article online
Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, et al. (2004) Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432: 769-775. Find this article online
Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, et al. (2002) Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8: 379-385. Find this article online
Belkaid Y, Von Stebut E, Mendez S, Lira R, Caler E, et al. (2002) CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J Immunol 168: 3992-4000. Find this article online
Khan IA, Schwartzman JD, Kasper LH, Moretto M (1999) CD8+ CTLs are essential for protective immunity against Encephalitozoon cuniculi infection. J Immunol 162: 6086-6091. Find this article online
Morrot A, Zavala F (2004) Effector and memory CD8+ T cells as seen in immunity to malaria. Immunol Rev 201: 291-303. Find this article online
Parker SJ, Roberts CW, Alexander J (1991) CD8+ T cells are the major lymphocyte subpopulation involved in the protective immune response to Toxoplasma gondii in mice. Clin Exp Immunol 84: 207-212. Find this article online
Sano G, Hafalla JC, Morrot A, Abe R, Lafaille JJ, et al. (2001) Swift development of protective effector functions in naive CD8(+) T cells against malaria liver stages. J Exp Med 194: 173-180. Find this article online
Tarleton RL, Koller BH, Latour A, Postan M (1992) Susceptibility of beta 2-microglobulin-deficient mice to Trypanosoma cruzi infection. Nature 356: 338-340. Find this article online
Wizel B, Garg N, Tarleton RL (1998) Vaccination with trypomastigote surface antigen 1-encoding plasmid DNA confers protection against lethal Trypanosoma cruzi infection. Infect Immun 66: 5073-5081. Find this article online
Weiss WR, Sedegah M, Beaudoin RL, Miller LH, Good MF (1988) CD8+ T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proc Natl Acad Sci U S A 85: 573-576. Find this article online
Sedegah M, Hedstrom R, Hobart P, Hoffman SL (1994) Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein. Proc Natl Acad Sci U S A 91: 9866-9870. Find this article online
Yewdell JW, Bennink JR (1999) Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 17: 51-88. Find this article online
Chen W, Anton LC, Bennink JR, Yewdell JW (2000) Dissecting the multifactorial causes of immunodominance in class I-restricted T cell responses to viruses. Immunity 12: 83-93. Find this article online
Fonseca SG, Moins-Teisserenc H, Clave E, Ianni B, Nunes VL, et al. (2005) Identification of multiple HLA-A*0201-restricted cruzipain and FL-160 CD8+ epitopes recognized by T cells from chronically Trypanosoma cruzi-infected patients. Microbes Infect 7: 688-697. Find this article online
Low HP, Santos MA, Wizel B, Tarleton RL (1998) Amastigote surface proteins of Trypanosoma cruzi are targets for CD8+ CTL. J Immunol 160: 1817-1823. Find this article online
Katae M, Miyahira Y, Takeda K, Matsuda H, Yagita H, et al. (2002) Coadministration of an interleukin-12 gene and a Trypanosoma cruzi gene improves vaccine efficacy. Infect Immun 70: 4833-4840. Find this article online
Wrightsman RA, Luhrs KA, Fouts D, Manning JE (2002) Paraflagellar rod protein-specific CD8+ cytotoxic T lymphocytes target Trypanosoma cruzi-infected host cells. Parasite Immunol 24: 401-412. Find this article online
Rodrigues MM, Boscardin SB, Vasconcelos JR, Hiyane MI, Salay G, et al. (2003) Importance of CD8 T cell-mediated immune response during intracellular parasitic infections and its implications for the development of effective vaccines. An Acad Bras Cienc 75: 443-468. Find this article online
Wizel B, Palmieri M, Mendoza C, Arana B, Sidney J, et al. (1998) Human infection with Trypanosoma cruzi induces parasite antigen-specific cytotoxic T lymphocyte responses. J Clin Invest 102: 1062-1071. Find this article online
Laucella SA, Postan M, Martin D, Hubby Fralish B, Albareda MC, et al. (2004) Frequency of interferon-gamma-producing T cells specific for Trypanosoma cruzi inversely correlates with disease severity in chronic human Chagas disease. J Infect Dis 189: 909-918. Find this article online
Garg N, Nunes MP, Tarleton RL (1997) Delivery by Trypanosoma cruzi of proteins into the MHC class I antigen processing and presentation pathway. J Immunol 158: 3293-3302. Find this article online
Atwood JA 3rd, Weatherly DB, Minning TA, Bundy B, Cavola C, et al. (2005) The Trypanosoma cruzi proteome. Science 309: 473-476. Find this article online
El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, et al. (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309: 409-415. Find this article online
Masopust D, Vezys V, Marzo AL, Lefrancois L (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291: 2413-2417. Find this article online
Lukacher AE, Moser JM, Hadley A, Altman JD (1999) Visualization of polyoma virus-specific CD8+ T cells in vivo during infection and tumor rejection. J Immunol 163: 3369-3378. Find this article online
Schepers K, Toebes M, Sotthewes G, Vyth-Dreese FA, Dellemijn TA, et al. (2002) Differential kinetics of antigen-specific CD4+ and CD8+ T cell responses in the regression of retrovirus-induced sarcomas. J Immunol 169: 3191-3199. Find this article online
Marten NW, Stohlman SA, Zhou J, Bergmann CC (2003) Kinetics of virus-specific CD8+-T-cell expansion and trafficking following central nervous system infection. J Virol 77: 2775-2778. Find this article online
Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, et al. (1998) Counting antigen-specific CD8 T cells: A reevaluation of bystander activation during viral infection. Immunity 8: 177-187. Find this article online
Kaech SM, Wherry EJ, Ahmed R (2002) Effector and memory T-cell differentiation: Implications for vaccine development. Nat Rev Immunol 2: 251-262. Find this article online
Campetella O, Sanchez D, Cazzulo JJ, Frasch AC (1992) A superfamily of Trypanosoma cruzi surface antigens. Parasitol Today 8: 378-381. Find this article online
Doherty PC, Christensen JP (2000) Accessing complexity: The dynamics of virus-specific T cell responses. Annu Rev Immunol 18: 561-592. Find this article online
Fujimura AE, Kinoshita SS, Pereira-Chioccola VL, Rodrigues MM (2001) DNA sequences encoding CD4+ and CD8+ T-cell epitopes are important for efficient protective immunity induced by DNA vaccination with a Trypanosoma cruzi gene. Infect Immun 69: 5477-5486. Find this article online
Minoprio PM, Coutinho A, Joskowicz M, D'Imperio Lima MR, Eisen H (1986) Polyclonal lymphocyte responses to murine Trypanosoma cruzi infection. II. Cytotoxic T lymphocytes. Scand J Immunol 24: 669-679. Find this article online
Minoprio P, Itohara S, Heusser C, Tonegawa S, Coutinho A (1989) Immunobiology of murine T. cruzi infection: The predominance of parasite-nonspecific responses and the activation of TCRI T cells. Immunol Rev 112: 183-207. Find this article online
La Gruta NL, Kedzierska K, Pang K, Webby R, Davenport M, et al. (2006) A virus-specific CD8+ T cell immunodominance hierarchy determined by antigen dose and precursor frequencies. Proc Natl Acad Sci U S A 103: 994-999. Find this article online
Tomlinson S, Pontes de Carvalho LC, Vandekerckhove F, Nussenzweig V (1994) Role of sialic acid in the resistance of Trypanosoma cruzi trypomastigotes to complement. J Immunol 153: 3141-3147. Find this article online
Chuenkova M, Pereira ME (1995) Trypanosoma cruzi trans-sialidase: Enhancement of virulence in a murine model of Chagas' disease. J Exp Med 181: 1693-1703. Find this article online
Pereira-Chioccola VL, Schenkman S (1999) Biological role of Trypanosoma cruzi trans-sialidase. Biochem Soc Trans 27: 516-518. Find this article online
Belen Carrillo M, Gao W, Herrera M, Alroy J, Moore JB, et al. (2000) Heterologous expression of Trypanosoma cruzi trans-sialidase in Leishmania major enhances virulence. Infect Immun 68: 2728-2734. Find this article online
Frasch AC (2000) Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. Parasitol Today 16: 282-286. Find this article online
El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, et al. (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309: 404-409. Find this article online
Tarleton RL, Kissinger J (2001) Parasite genomics: Current status and future prospects. Curr Opin Immunol 13: 395-402. Find this article online
Plebanski M, Lee EA, Hannan CM, Flanagan KL, Gilbert SC, et al. (1999) Altered peptide ligands narrow the repertoire of cellular immune responses by interfering with T-cell priming. Nat Med 5: 565-571. Find this article online
Kahn S, Van Voorhis WC, Eisen H (1990) The major 85-kD surface antigen of the mammalian form of Trypanosoma cruzi is encoded by a large heterogeneous family of simultaneously expressed genes. J Exp Med 172: 589-597. Find this article online
Albareda MC, Laucella SA, Alvarez MG, Armenti AH, Bertochi G, et al. (2006) Trypanosoma cruzi modulates the profile of memory CD8+ T cells in chronic Chagas' disease patients. Int Immunol 18: 465-471. Find this article online
Zhang L, Tarleton RL (1999) Parasite persistence correlates with disease severity and localization in chronic Chagas' disease. J Infect Dis 180: 480-486. Find this article online
Gulukota K, Sidney J, Sette A, DeLisi C (1997) Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J Mol Biol 267: 1258-1267. Find this article online
Martin DL, Tarleton RL (2005) Antigen-specific T cells maintain an effector memory phenotype during persistent Trypanosoma cruzi infection. J Immunol 174: 1594-1601. Find this article online
Parham P, Brodsky FM (1981) Partial purification and some properties of BB7.2. A cytotoxic monoclonal antibody with specificity for HLA-A2 and a variant of HLA-A28. Hum Immunol 3: 277-299. Find this article online
Barber DL, Wherry EJ, Ahmed R (2003) Cutting edge: Rapid in vivo killing by memory CD8 T cells. J Immunol 171: 27-31. Find this article online
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31: 3497-3500. Find this article online
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2006 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Rappocciolo G, Piazza P, Fuller CL, Reinhart TA, Watkins SC, et al. (2006) Correction: DC-SIGN on B Lymphocytes Is Required for Transmission of HIV-1 to T Lymphocytes. PLoS Pathog 2(8): e88. doi:10.1371/journal.ppat.0020088