Full Text

Turn on search term navigation

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Hemoglobin C differs from normal hemoglobin A by a glutamate-to-lysine substitution at position 6 of beta globin and is oxidatively unstable. Compared to homozygous AA erythrocytes, homozygous CC erythrocytes contain higher levels of membrane-associated hemichromes and more extensively clustered band 3 proteins. These findings suggest that CC erythrocytes have a different membrane matrix than AA erythrocytes.

Methodology and Findings

We found that AA and CC erythrocytes differ in their membrane lipid composition, and that a subset of CC erythrocytes expresses increased levels of externalized phosphatidylserine. Detergent membrane analyses for raft marker proteins indicated that CC erythrocyte membranes are more resistant to detergent solubilization. These data suggest that membrane raft organization is modified in CC erythrocytes. In addition, the average zeta potential (a measure of surface electrochemical potential) of CC erythrocytes was ≈2 mV lower than that of AA erythrocytes, indicating that substantial rearrangements occur in the membrane matrix of CC erythrocytes. We were able to recapitulate this low zeta potential phenotype in AA erythrocytes by treating them with NaNO2 to oxidize hemoglobin A molecules and increase levels of membrane-associated hemichromes.

Conclusion

Our data support the possibility that increased hemichrome deposition and altered lipid composition induce molecular rearrangements in CC erythrocyte membranes, resulting in a unique membrane structure.

Details

Title
Altered Membrane Structure and Surface Potential in Homozygous Hemoglobin C Erythrocytes
Author
Tokumasu, Fuyuki; Nardone, Glenn A; Ostera, Graciela R; Fairhurst, Rick M; Beaudry, Steven D; Hayakawa, Eri; Dvorak, James A
First page
e5828
Section
Research Article
Publication year
2009
Publication date
Jun 2009
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1289133323
Copyright
This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.