Full Text

Turn on search term navigation

© 2007 Kauramäki et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

An experienced car mechanic can often deduce what's wrong with a car by carefully listening to the sound of the ailing engine, despite the presence of multiple sources of noise. Indeed, the ability to select task-relevant sounds for awareness, whilst ignoring irrelevant ones, constitutes one of the most fundamental of human faculties, but the underlying neural mechanisms have remained elusive. While most of the literature explains the neural basis of selective attention by means of an increase in neural gain, a number of papers propose enhancement in neural selectivity as an alternative or a complementary mechanism.

Methodology/Principal Findings

Here, to address the question whether pure gain increase alone can explain auditory selective attention in humans, we quantified the auditory cortex frequency selectivity in 20 healthy subjects by masking 1000-Hz tones by continuous noise masker with parametrically varying frequency notches around the tone frequency (i.e., a notched-noise masker). The task of the subjects was, in different conditions, to selectively attend to either occasionally occurring slight increments in tone frequency (1020 Hz), tones of slightly longer duration, or ignore the sounds. In line with previous studies, in the ignore condition, the global field power (GFP) of event-related brain responses at 100 ms from the stimulus onset to the 1000-Hz tones was suppressed as a function of the narrowing of the notch width. During the selective attention conditions, the suppressant effect of the noise notch width on GFP was decreased, but as a function significantly different from a multiplicative one expected on the basis of simple gain model of selective attention.

Conclusions/Significance

Our results suggest that auditory selective attention in humans cannot be explained by a gain model, where only the neural activity level is increased, but rather that selective attention additionally enhances auditory cortex frequency selectivity.

Details

Title
Selective Attention Increases Both Gain and Feature Selectivity of the Human Auditory Cortex
Author
Kauramäki, Jaakko; Jääskeläinen, Iiro P; Sams, Mikko
First page
e909
Section
Research Article
Publication year
2007
Publication date
Sep 2007
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1289164827
Copyright
© 2007 Kauramäki et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.