Full text

Turn on search term navigation

Copyright Chilean Journal of Agricultural Research Jan-Mar 2012

Abstract

The environment × crop interaction was significant, primarily due to the magnitude of differences among environments for crops that tended to accumulate Cd in their seed (Table 3). These crops were durum, flax, sunflower, and soybean. For these crops, greater seed Cd occurred when grown on the soil series with high natural Cd content. Even among these soil series, Fargo and Bearden/Perella that occurred at the Fargo and Prosper locations, respectively, crop seed Cd content varied with year. Cadmium seed accumulation in soybean and sunflower was reduced at both Fargo and Prosper when comparing 1995 with 1994 (Table 3). Soybean seed Cd content was 41 and 34% greater at Fargo and Prosper, respectively, when comparing seed Cd levels in 1994 with those in 1995. The greatest difference in seed Cd content between 1994 and 1995 occurred for sunflower where seed Cd content was approximately 50% less in 1995 than 1994 at the Fargo location with the Fargo soil series. Sunflower seed Cd content was approximately 15% less in 1995 than 1994 at the Prosper location with the Bearden/Perella soil series. Seed Cd content in flax at Fargo was similar in 1994 and 1995, but at Prosper flax seed Cd was 23% less when comparing 1995 with 1994. Soil series and year appear to influence seed Cd content more for the crops that tend to accumulated seed Cd. However, durum wheat seed Cd was similar at the Fargo and Prosper environments in 1994 and 1995. The Fargo soil series is more clayey than the Bearden/ Perella series and climatic differences between years often influence treatment effects. Extended wet periods were observed in 1995 at the Prosper and Fargo locations that may have reduced soil oxygen levels and nutrient uptake. Environmental factors influence different crops and the same crop differently for seed Cd concentration even on the same soil series. Extensive wet periods can reduce chloride levels in the rooting zone, and thus lower Cd accumulation indirectly through effects on chloride (Liu et al., 2007). Soil drainage groups differ in extent of leaching of chloride by natural rainfall, and this drainage difference was the major factor found to influence Cd concentration in ND-MN sunflower kernels ([Chaney] et al., 1993).

Previous researchers ([Oliver, D.P.] et al., 1994) reported Zn fertilizer additions can reduce seed Cd concentration when soil DTPA-extractable Zn levels are initially deficient. In our study the crop by Zn interaction was significant and indicated addition of Zn fertilizer had no effect on Cd accumulation for the crops previously identified as being low in seed Cd concentration. However, for flax, a crop associated with seed Cd concentration, addition of Zn fertilizer caused lower seed Cd concentration (Table 4). Lack of a reduced seed Cd response for the other Cd accumulating crops sunflower, soybean, and durum, with Zn fertilizer addition is unclear, but may be related to the relatively high initial soil Zn levels for the different soil series (Table 2). Three of the five soil series showed DTPA-extractable Zn levels (Table 2) above the normal range of 0.51 to 0.75 µg g-1 stated by Franzen (2003). The other soil series, [Williams] and Bearden/Perella, DTPAextractable Zn levels (0.62 and 0.6 µg g-1, respectively, Table 2) would be within the normal range as stated by Franzen (2003). Since soil DTPA-extractable Zn levels were already high for the soil series, further Zn additions may have been ineffective in lowering seed Cd content. [Harris] and Taylor (2001) reported that Cd accumulation may be reduced in seeds when Zn fertilizer additions remove Zn stress on plants. Crops in our study were likely not subject to Zn stress. Crop seed Cd ranking is similar for the non-Zn and 25-kg ha-1-Zn fertility treatments. The crop by Zn interaction is primarily caused by reduced seed Cd level at the high Zn fertility treatment for flax. Sunflower seed Cd level was also statistically less at the high Zn fertility treatment (0.73 µg g-1) compared with the non-Zn treatment (0.76 µg g-1), but the biological importance of this difference is minimal. Also, chloride levels, known to be a significant factor in crop Cd concentration, may have played a role on the Zn effect on Cd concentration in the seed.

The combined analysis across 10 environments indicated the main effects of crop and Zn treatment and the environment × crop, and crop × Zn interactions were significant for seed Cd content (Tables 5 and 6). The crop × Zn interaction occurred primarily because the Cd accumulation in flax was three to four times greater than the Cd accumulation in either durum wheat cultivar (Table 5). This agrees with Grant and Bailey (1997), who found that flax tends to accumulate higher seed Cd than cereal crops. Medora durum wheat seed Cd content showed no response to Zn fertilization, however, [Renville] durum wheat showed reduced seed Cd content at the 25 kg ha-1 Zn rate compared to the control and 5 kg ha-1 Zn rate. Williams and David (1976) and [Abdel-Sabour] et al. (1988) reported synergistic and antagonist effects of soil applied Zn fertilizer on seed Cd content. A significant Cd reduction with Zn fertilization has been reported for soils which tested Zn deficient according to soil tests such as the DTPA method. Zinc fertilization on Zn-deficient soils reduced seed Cd concentration (Oliver et al., 1994; Grant and Bailey, 1997). Seed Cd content was unique at each Zn rate for flax with values decreasing as Zn rate increased. The reduction in the flax seed Cd content was 13% at the 25 kg ha-1 Zn rate compared with the control. This is in general agreement with our results in Experiment 1 where flax seed Cd content was 10% less at the 25 kg Zn ha-1 rate compared with the control.

Details

Title
ZINC FERTILIZATION EFFECTS ON SEED CADMIUM ACCUMULATION IN OILSEED AND GRAIN CROPS GROWN ON NORTH DAKOTA SOILS
Author
Rojas-Cifuentes, Gonzalo A; Johnson, Burton L; Berti, Marisol T; Norvell, Wendell A
Pages
117-124
Section
RESEARCH
Publication year
2012
Publication date
Jan-Mar 2012
Publisher
Chilean Journal of Agricultural Research
ISSN
07185820
e-ISSN
07185839
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1291058523
Copyright
Copyright Chilean Journal of Agricultural Research Jan-Mar 2012