About the Authors:
Jan Felix Drexler
Contributed equally to this work with: Jan Felix Drexler, Victor Max Corman
Affiliations Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany, Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
Victor Max Corman
Contributed equally to this work with: Jan Felix Drexler, Victor Max Corman
Affiliation: Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
Florian Gloza-Rausch
Affiliation: Noctalis, Centre for Bat Protection and Information, Bad Segeberg, Germany
Antje Seebens
Affiliation: Noctalis, Centre for Bat Protection and Information, Bad Segeberg, Germany
Augustina Annan
Affiliation: Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
Anne Ipsen
Affiliation: Noctalis, Centre for Bat Protection and Information, Bad Segeberg, Germany
Thomas Kruppa
Affiliations Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany, Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
Marcel A. Müller
Affiliation: Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
Elisabeth K. V. Kalko
Affiliations Institute of Experimental Ecology, University of Ulm, Ulm, Germany, Smithsonian Tropical Research Institute, Balboa, Panama
Yaw Adu-Sarkodie
Affiliation: Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
Samuel Oppong
Affiliation: Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
Christian Drosten
* E-mail: [email protected]
Affiliations Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany, Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
Introduction
The subfamily Paramyxovirinae in the family Paramyxoviridae comprises the five genera Respiro-, Morbilli-, Rubula-, Avula-, and Henipavirus, as well as a group of yet unclassified viruses [1]. The genus Henipavirus contains two of the most pathogenic viruses known in humans, Hendra- and Nipah virus, which were discovered only in 1994 and 1998, respectively [2]–[5]. Both viruses cause severe encephalitis in humans, exemplified by the Nipah virus outbreaks in Malaysia, India and Bangladesh with case fatality rates ranging from 40–100% [6]–[10]. Work on these viruses is restricted to biosafety level-four laboratories. Typically, Henipaviruses are not circulating in humans, but can be acquired from domestic animals such as pigs or horses [6], [11]. Direct transmission of Nipah virus between humans has been described and transmission from bats to humans was implicated in Nipah virus outbreaks not related to pig farming [12]–[14]. Drastic control measures may be necessary to contain outbreaks of Henipaviruses, as exemplified by the culling of more than one million pigs during a Nipah virus outbreak in Malaysia in 1999 [11]. Henipaviruses seem to have their primary reservoir in fruit bats of the genus Pteropus, in the family Pteropodidae. Serologic evidence for Henipavirus infection in bats has been reported in a geographic range covering Australia, Malaysia, Thailand, Cambodia, Indonesia, Bangladesh, India, and Madagascar [9], [15]–[20]. Hendra virus was isolated from bats in Australia, and Nipah virus in Malaysia and Cambodia. Detection of Henipavirus RNA has been accomplished in Thailand (Nipah virus) and Australia (Hendra virus) [20]. Consequently, the geographic range of Pteropus seems to limit the geographic range of Hendra and Nipah virus encephalitis in humans [8], [20], [21].
Interestingly, a recent serological study on E. helvum, a fruit-eating bat that occurs in Africa but not in Asia, implicated the presence of antigenetically related viruses [22]. This is remarkable because E. helvum is highly abundant in Africa and colonies are believed to conduct annual transcontinental migration, following the rainfall gradient to suitable feeding grounds, with reports on individual bats travelling up to 2,000 kilometres [23], [24]. E. helvum is a rather large fruit bat that roosts exposed and at high densities in trees during daytime. The animals are frequently hunted and consumed by humans as a supplementary source of protein [25]–[27].
In spite of serological evidence, it has never been confirmed so far that Henipaviruses exist in African bats. In the current study we positively identified putative Henipaviruses for the first time in E. helvum in Ghana. Jointly with recent serological data [22], our results suggest a tremendous extension of the geographic range of this virus genus, which is one of the most pathogenic known to humans.
Materials and Methods
For all capturing and sampling, permission was obtained from the Wildlife Division, Forestry Commission, Accra, Ghana. Samples were exported under a state contract between the Republic of Ghana and the Federal Republic of Germany, and under an additional export permission from the Veterinary Services of the Ghana Ministry of Food and Agriculture.
Geographic co-ordinates of the sampling site were N06°42′02.0″ W001°37′29.9″. Bats were identified as E. helvum by trained field biologists on site. Additionally, of those samples that yielded positive RT-PCR results, mitochondrial DNA was amplified and sequenced for species confirmation as described [28]. Bat droppings were collected on plastic film. Ca. 100 mg of feces were suspended in 500 µl of RNAlater solution immediately after dropping. Suspensions were homogenised by vortexing and 50 µl were suspended into 560 µl of Buffer AVL from the Qiagen viral RNA mini kit (Qiagen, Hilden, Germany) and processed further according to the instructions of the manufacturer as described earlier [29]. Elution volume was 50 µl. Broad-range PCR for the genus Henipavirus was done as recently described, yielding amplicons of 496 base pairs located across domains I and II of the polymerase gene [30]. Sanger sequencing of PCR products was done using dye terminator chemistry (Applied Biosystems). Bayesian inference of phylogeny was done using BEAST, version 1.4.8 [31] with both nucleotide- (GTR+I+gamma) and codon-based (SRD06) substitution models [32]. The most applicable population model was determined by using both the ESS statistic for all traces and the Bayes factor test on the posterior probability trace of each run with TRACER. Metropolis-coupled Markov-chain Monte Carlo (MCMC) chains with 2X10E7 iterations were sampled every 1000 generations, resulting in 20,000 sampled trees.
Based on prior findings [33], [34], isolation of virus was attempted from feces suspended in RNAlater solution. Vero and CaCo2 cells were used, as well as primary cells from colon, lung and kidney of Myotis nattereri, E. helvum and Rousettus aegyptiacus bats (own unpublished data). No cytopathic effect was observed and no virus growth was seen by RT-PCR, despite repeated trials (data not shown).
Results
During February 2008, a large colony of E. helvum fruit bats was studied in the zoological gardens of Kumasi, Ghana (Figure 1). The colony was estimated to contain approximately 400,000 bats [35]. During five days in early February, plastic film (12 m2) was laid out in the late afternoon and early in the morning under several trees densely occupied by bats, in order to collect fecal samples. Due to a low frequency of droppings received on the plastic film (about one dropping per 2 minutes), and due to the distance between the individual droppings on plastic film, it was assumed that individual droppings stemmed from different individual bats.
[Figure omitted. See PDF.]
Figure 1. The Eidolon helvum colony at Kumasi zoological gardens, Ghana.
Photos from A. Seebens and F. Gloza-Rausch.
https://doi.org/10.1371/journal.pone.0006367.g001
In total, three of 215 fecal samples yielded RT-PCR products. 496 base pair fragments of all products were sequenced and aligned with homologous fragments of Paramyxoviridae reference strains, including Hendra and Nipah viruses from GenBank. Supplemental figures S1 and S2 show nucleotide and amino acid alignments of the novel bat paramyxoviruses with Hendra and Nipah virus prototype strains. Refer to Figure 2 for GenBank Accession Numbers of all reference strains, including those of the novel viruses described here.
[Figure omitted. See PDF.]
Figure 2. L-gene phylogeny with novel bat paramyxoviruses.
The phylogenetic tree was generated and annotated using BEAST version 1.4.8, using a codon-based substitution and an expansion growth population model [31]. For better graphic visualization, only posterior probability values below 1.0 are shown. The initial sequence alignment was based on a 496 base pair fragment from PCR screening. Exclusion of primer sites resulted in a 439 bp fragment, and further exclusion of ambiguous sites resulted in a 426 base pairs gap-free alignment corresponding to nucleotides 9993–10430 of Human parainfluenza virus 1 strain Washington/1964, GenBank Accession Number NC_003461. Novel bat paramyxoviruses are shown in boldface type. GenBank Accession numbers of the novel viruses are FJ609191 (BatPV/Eid.hel/GH10/2008), FJ609194 (BatPV/Eid.hel/GH48/2008) and GQ168929 (BatPV/Eid.hel/GH45/2008). Branches leading to the Henipavirus genus are in red color. Established genera in the Paramyxoviridae family are indicated next to taxon names. Taxa are named according to the following pattern: Genus/typical host/virus abbreviation/accession number/isolation year. HenipaV = Henipavirus, MorbilliV = Morbillivirus, RespiroV = Respirovirus, RubulaV = Rubulavirus, AvulaV = Avulavirus, MetapneumoV = Metapneumovirus, PneumoV = Pneumovirus, UPV = unclassified paramyxovirus. NiV = Nipah virus, HeV = Hendra virus, PPRV = Peste-des-petitsruminants virus, CeMV DMV = Cetacean morbillivirus strain dolphin morbillivirus, MeV = Measles virus, RPV = Rinderpest virus, PDV = Phocine distemper virus, CDV = Canine distemper virus, SeV = Sendai virus, bPIV3 = Bovine parainfluenza virus 3, hPIV1 = Human parainfluenza virus 1, hPIV3 = Human parainfluenza virus 3, SV5 = Simian parainfluenza virus 5, SV41 = Simian virus 41, MenPV = Menangle virus, MprPV = Mapuera virus, MuV = Mumps virus, PorPV = Porcine rubulavirus, TioPV = Tioman virus, hPIV2 = Human parainfluenza virus 2, aMPV4 = Avian paramyxovirus type 4, aMPV6 = Avian paramyxovirus type 6, aMPV9 = Avian paramyxovirus type 9, aMPV2 = Avian paramyxovirus type 2, aMPV3 = Avian paramyxovirus type 3, NDV = Newcastle disease virus, hMPV = Human metapneumovirus, aMPV = Avian metapneumovirus, MPV = Murine pneumonia virus, bRSV = Bovine respiratory syncytial virus, hRSV = Human respiratory syncytial virus, NarPV = Nariva virus, ASPV = Atlantic salmon paramyxovirus, TuPV = Tupaia paramyxovirus, MosPV = Mossman virus, BeiPV = Beilong virus, JPV = J virus, FdlPV = Fer-de-lance virus.
https://doi.org/10.1371/journal.pone.0006367.g002
As shown in Figure 2, the resulting phylogeny was in concordance with current proposals of Paramyxoviridae taxonomy. The three viral sequences from E. helvum were in close or basal association with the currently established genus Henipavirus (Figure 2). One virus was most closely related to Nipah viruses, extending the internal amino acid distance within the genus Henipavirus from 6.8% to 32.9% (Table 1). Inclusion of the two other viruses extended the internal distance to 36.3%. In the analyzed fragment, the highest internal distance in any mammalian paramyxovirus genus was observed in the genus Rubulavirus at 40.8%, justifying association of the novel bat paramyxoviruses with the genus Henipavirus.
[Figure omitted. See PDF.]
Table 1. Percentage amino acid identity.
https://doi.org/10.1371/journal.pone.0006367.t001
After sequencing, individual real time PCR assays with TaqMan probes were designed for each paramyxovirus sequence (assay formulations available on request). Individual in-vitro transcribed RNA standards were generated for each sequence with methodology described earlier [36], and the paramyxovirus RNA concentrations in samples were determined. The sample that yielded strain BatPV/Eid.hel/GH10/2008 contained 1,030 RNA copies per milligram of feces. The two other samples (BatPV/Eid.hel/GH45/2008; BatPV/Eid.hel/GH48/2008) contained below 50 copies of RNA per milligram, i.e., they were detected but ranged below the limit down to which reliable quantification was possible.
Discussion
Further to serological data provided by Hayman et al. [22], we have detected paramyxoviruses closely related to Hendra and Nipah virus in an African fruit bat, E. helvum. The genetic distance between these viruses and Hendra and Nipah virus was compatible with the distance observed within other established Paramyxoviridae genera, suggesting that the novel viruses might constitute members of the Henipavirus genus. The considerable sequence divergence between the three novel putative Henipaviruses encountered in one huge colony might indicate substantial genetic variability of related viruses in bats. Formal taxonomic classification according to conventions for Paramyxoviridae will require the characterization of additional genomic features, such as the phylogenies of the nucleoprotein and F genes, the lengths of intergenic regions, as well as the predicted transcription start sites of subgenomic RNAs [1], [3]. Unfortunately, sequencing of longer genomic fragments was not successful from our samples, most likely due to the low concentration of RNA encountered. This was also the assumed reason for failure of virus isolation.
The novel viruses were detected from wild E. helvum that occupied trees in a zoological garden in the centre of Kumasi, Ghana's second largest city with a population of 1.5 million. Large colonies of E. helvum are widely observed in urban areas of Subsaharan Africa [27], [37]. In the location studied here, hundreds of visitors and staff enter the zoo on a daily basis and may become exposed. The ways of exposure may be key features in the understanding of the origin of epidemics of bat-borne viruses, such as Ebolaviruses, Henipaviruses, or Coronaviruses [9], [38]–[41]. It has been proposed that humans may be exposed to viruses from fruit bats that chew fruits and spit out the pulp at feeding sites [42]. However, it appears that E. helvum uses urban habitats only for roosting and rarely for feeding. Nevertheless, detailed studies on the foraging behavior of E. helvum are lacking. Another way of exposition may be via contact with bat urine or fecal material. In this study we have sampled bat feces that are abundant under trees in urban E. helvum roosting sites. Interestingly, the observed virus RNA concentrations in fecal material were rather low as compared to enteric viruses transmitted via the fecal-oral route in humans [43]–[45]. Bat urine was frequently described to contain Henipaviruses [15], [41], [46]. Despite immediate recollection of fecal samples from plastic sheets in this study, contamination of these samples with bat urine cannot be completely excluded. Overall, our data suggests a limited risk of exposure to virus from bat feces. This is important to note to prevent any premature action aiming at extirpating flying foxes as potential virus hosts, as this may disrupt important ecological functions, i.e., seed dispersal and pollination. However, our sample size was limited and more studies are required to determine whether RNA concentrations may vary within bat colonies, and over time.
Another way of exposure to bat viruses may be via consumption of bat meat for food or medical purposes [25], [26]. E. helvum is known to be one of the preferred bat species hunted for wild game in Africa [47]. Future studies need to focus on whether there is a relevant concentration of virus in organs or meat of bats, and whether persons consuming bat meat on a regular basis might show evidence of past infection.
Supporting Information
[Figure omitted. See PDF.]
Figure S1.
Nucleotide alignment of Henipavirus reference strains and novel viruses. The entire 439 base pair polymerase fragment is aligned with Hendra virus and Nipah virus reference strains. Hendra virus on top serves as the comparison sequence in the alignment. Dots represent identical bases in compared sequences; deviations are spelled out.
https://doi.org/10.1371/journal.pone.0006367.s001
(0.02 MB PDF)
Figure S2.
Amino acid alignment of Henipavirus reference strains and novel viruses. The 146 amino acids resulting from translation of a 439 base pair polymerase fragment are aligned with Hendra virus and Nipah virus reference strains. Hendra virus on top serves as the comparison sequence in the alignment. Dots represent identical amino acids in compared sequences; deviations are spelled out.
https://doi.org/10.1371/journal.pone.0006367.s002
(0.01 MB PDF)
Acknowledgments
We are grateful to voluntary staff at Noctalis for support and to Peter Vallo from the Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno for typing of bat mitochondrial DNA.
Author Contributions
Conceived and designed the experiments: JFD CD. Performed the experiments: VMC. Analyzed the data: JFD VMC CD. Contributed reagents/materials/analysis tools: FGR AS AA AI TK MAM EKVK YAS SO. Wrote the paper: JFD CD.
Citation: Drexler JF, Corman VM, Gloza-Rausch F, Seebens A, Annan A, Ipsen A, et al. (2009) Henipavirus RNA in African Bats. PLoS ONE4(7): e6367. https://doi.org/10.1371/journal.pone.0006367
1. Lamb RA, Collins PL, Kolakofsky D, Melero JA, Nagai Y, et al. (2005) Family paramyxoviridae. In: Fauquet CM, Mayo J, Maniloff J, Desselberger U, Ball LA, editors. Virus taxonomy: 8th report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier. pp. 655–668.RA LambPL CollinsD. KolakofskyJA MeleroY. Nagai2005Family paramyxoviridae.CM FauquetJ. MayoJ. ManiloffU. DesselbergerLA BallVirus taxonomy: 8th report of the International Committee on Taxonomy of VirusesSan DiegoElsevier655668
2. Lamb RA, Parks GD (2007) Paramyxoviridae: the viruses and their replication. In: Knipe DM, Griffin DE, Lamb RA, Straus SE, Howley PM, et al., editors. Fields virology. Philadelphia: Lippincott. pp. 1449–1496.RA LambGD Parks2007Paramyxoviridae: the viruses and their replication.DM KnipeDE GriffinRA LambSE StrausPM HowleyFields virologyPhiladelphiaLippincott14491496
3. Wang LF, Chua KB, Yu M, Eaton BT (2003) Genome Diversity of Emerging Paramyxoviruses. Current Genomics 4: 263–273.LF WangKB ChuaM. YuBT Eaton2003Genome Diversity of Emerging Paramyxoviruses.Current Genomics4263273
4. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, et al. (2000) Nipah virus: a recently emergent deadly paramyxovirus. Science 288: 1432–1435.KB ChuaWJ BelliniPA RotaBH HarcourtA. Tamin2000Nipah virus: a recently emergent deadly paramyxovirus.Science28814321435
5. Murray K, Selleck P, Hooper P, Hyatt A, Gould A, et al. (1995) A morbillivirus that caused fatal disease in horses and humans. Science 268: 94–97.K. MurrayP. SelleckP. HooperA. HyattA. Gould1995A morbillivirus that caused fatal disease in horses and humans.Science2689497
6. Eaton BT, Broder CC, Middleton D, Wang LF (2006) Hendra and Nipah viruses: different and dangerous. Nat Rev Microbiol 4: 23–35.BT EatonCC BroderD. MiddletonLF Wang2006Hendra and Nipah viruses: different and dangerous.Nat Rev Microbiol42335
7. Halpin K, Hyatt AD, Plowright RK, Epstein JH, Daszak P, et al. (2007) Emerging viruses: coming in on a wrinkled wing and a prayer. Clin Infect Dis 44: 711–717.K. HalpinAD HyattRK PlowrightJH EpsteinP. Daszak2007Emerging viruses: coming in on a wrinkled wing and a prayer.Clin Infect Dis44711717
8. Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE, et al. (2006) Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg Infect Dis 12: 235–240.MS ChadhaJA ComerL. LowePA RotaPE Rollin2006Nipah virus-associated encephalitis outbreak, Siliguri, India.Emerg Infect Dis12235240
9. Wacharapluesadee S, Lumlertdacha B, Boongird K, Wanghongsa S, Chanhome L, et al. (2005) Bat Nipah virus, Thailand. Emerg Infect Dis 11: 1949–1951.S. WacharapluesadeeB. LumlertdachaK. BoongirdS. WanghongsaL. Chanhome2005Bat Nipah virus, Thailand.Emerg Infect Dis1119491951
10. Hossain MJ, Gurley ES, Montgomery JM, Bell M, Carroll DS, et al. (2008) Clinical presentation of nipah virus infection in Bangladesh. Clin Infect Dis 46: 977–984.MJ HossainES GurleyJM MontgomeryM. BellDS Carroll2008Clinical presentation of nipah virus infection in Bangladesh.Clin Infect Dis46977984
11. Mohd Nor MN, Gan CH, Ong BL (2000) Nipah virus infection of pigs in peninsular Malaysia. Rev Sci Tech 19: 160–165.MN Mohd NorCH GanBL Ong2000Nipah virus infection of pigs in peninsular Malaysia.Rev Sci Tech19160165
12. Gurley ES, Montgomery JM, Hossain MJ, Bell M, Azad AK, et al. (2007) Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg Infect Dis 13: 1031–1037.ES GurleyJM MontgomeryMJ HossainM. BellAK Azad2007Person-to-person transmission of Nipah virus in a Bangladeshi community.Emerg Infect Dis1310311037
13. Luby SP, Rahman M, Hossain MJ, Blum LS, Husain MM, et al. (2006) Foodborne transmission of Nipah virus, Bangladesh. Emerg Infect Dis 12: 1888–1894.SP LubyM. RahmanMJ HossainLS BlumMM Husain2006Foodborne transmission of Nipah virus, Bangladesh.Emerg Infect Dis1218881894
14. Hsu VP, Hossain MJ, Parashar UD, Ali MM, Ksiazek TG, et al. (2004) Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis 10: 2082–2087.VP HsuMJ HossainUD ParasharMM AliTG Ksiazek2004Nipah virus encephalitis reemergence, Bangladesh.Emerg Infect Dis1020822087
15. Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, et al. (2002) Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect 4: 145–151.KB ChuaCL KohPS HooiKF WeeJH Khong2002Isolation of Nipah virus from Malaysian Island flying-foxes.Microbes Infect4145151
16. Fogarty R, Halpin K, Hyatt AD, Daszak P, Mungall BA (2008) Henipavirus susceptibility to environmental variables. Virus Res 132: 140–144.R. FogartyK. HalpinAD HyattP. DaszakBA Mungall2008Henipavirus susceptibility to environmental variables.Virus Res132140144
17. Halpin K, Young PL, Field HE, Mackenzie JS (2000) Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J Gen Virol 81: 1927–1932.K. HalpinPL YoungHE FieldJS Mackenzie2000Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus.J Gen Virol8119271932
18. Harcourt BH, Lowe L, Tamin A, Liu X, Bankamp B, et al. (2005) Genetic characterization of Nipah virus, Bangladesh, 2004. Emerg Infect Dis 11: 1594–1597.BH HarcourtL. LoweA. TaminX. LiuB. Bankamp2005Genetic characterization of Nipah virus, Bangladesh, 2004.Emerg Infect Dis1115941597
19. Reynes JM, Counor D, Ong S, Faure C, Seng V, et al. (2005) Nipah virus in Lyle's flying foxes, Cambodia. Emerg Infect Dis 11: 1042–1047.JM ReynesD. CounorS. OngC. FaureV. Seng2005Nipah virus in Lyle's flying foxes, Cambodia.Emerg Infect Dis1110421047
20. Wacharapluesadee S, Boongird K, Wanghongsa S, Ratanasetyuth N, Supavonwong P, et al. (2009) A Longitudinal Study of the Prevalence of Nipah Virus in Pteropus lylei Bats in Thailand: Evidence for Seasonal Preference in Disease Transmission. Vector Borne Zoonotic Dis: epub ahead of print. S. WacharapluesadeeK. BoongirdS. WanghongsaN. RatanasetyuthP. Supavonwong2009A Longitudinal Study of the Prevalence of Nipah Virus in Pteropus lylei Bats in Thailand: Evidence for Seasonal Preference in Disease Transmission.Vector Borne Zoonotic Dis: epub ahead of print
21. Eaton BT, Broder CC, Wang LF (2005) Hendra and Nipah viruses: pathogenesis and therapeutics. Curr Mol Med 5: 805–816.BT EatonCC BroderLF Wang2005Hendra and Nipah viruses: pathogenesis and therapeutics.Curr Mol Med5805816
22. Hayman DT, Suu-Ire R, Breed AC, McEachern JA, Wang L, et al. (2008) Evidence of henipavirus infection in West African fruit bats. PLoS ONE 3: e2739.DT HaymanR. Suu-IreAC BreedJA McEachernL. Wang2008Evidence of henipavirus infection in West African fruit bats.PLoS ONE3e2739
23. Richter HV, Cumming GS (2008) First application of satellite telemetry to track African straw-coloured fruit bat migration. Journal of Zoology 275: 172–176.HV RichterGS Cumming2008First application of satellite telemetry to track African straw-coloured fruit bat migration.Journal of Zoology275172176
24. Thomas DW (1983) The annual migrations of three species of West African fruit bats (Chiroptera: Pteropodidae). Can J Zool 61: 2266–2272.DW Thomas1983The annual migrations of three species of West African fruit bats (Chiroptera: Pteropodidae).Can J Zool6122662272
25. Jenkins RKB, Racey PA (2008) Bats as bushmeat in Madagascar. Madagascar Conservation and Development 3: 22–30.RKB JenkinsPA Racey2008Bats as bushmeat in Madagascar.Madagascar Conservation and Development32230
26. Swensson J (2005) Bushmeat Trade in Techiman, Ghana, West Africa. 20 p. J. Swensson2005Bushmeat Trade in Techiman, Ghana, West Africa.20Uppsala: Uppsala University, Uppsala, Sweden. Uppsala: Uppsala University, Uppsala, Sweden.
27. DeFrees SW, Don E (1988) Eidolon helvum. Mammalian species 312: SW DeFreesE. Don1988Eidolon helvum.Mammalian species312
28. Vallo P, GuillénServent A, Benda P, Pires DB, Koubek P (2008) Variation of mitochondrial DNA reveals high cryptic diversity in Hipposideros caffer complex. Acta Chiropterologica 10: 193–206.P. ValloA. GuillénServentP. BendaDB PiresP. Koubek2008Variation of mitochondrial DNA reveals high cryptic diversity in Hipposideros caffer complex.Acta Chiropterologica10193206
29. Gloza-Rausch F, Ipsen A, Seebens A, Gottsche M, Panning M, et al. (2008) Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg Infect Dis 14: 626–631.F. Gloza-RauschA. IpsenA. SeebensM. GottscheM. Panning2008Detection and prevalence patterns of group I coronaviruses in bats, northern Germany.Emerg Infect Dis14626631
30. Tong S, Chern SW, Li Y, Pallansch MA, Anderson LJ (2008) Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses. J Clin Microbiol 46: 2652–2658.S. TongSW ChernY. LiMA PallanschLJ Anderson2008Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses.J Clin Microbiol4626522658
31. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214.AJ DrummondA. Rambaut2007BEAST: Bayesian evolutionary analysis by sampling trees.BMC Evol Biol7214
32. Shapiro B, Rambaut A, Drummond AJ (2006) Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol 23: 7–9.B. ShapiroA. RambautAJ Drummond2006Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences.Mol Biol Evol2379
33. Forster JL, Harkin VB, Graham DA, McCullough SJ (2008) The effect of sample type, temperature and RNAlater on the stability of avian influenza virus RNA. J Virol Methods 149: 190–194.JL ForsterVB HarkinDA GrahamSJ McCullough2008The effect of sample type, temperature and RNAlater on the stability of avian influenza virus RNA.J Virol Methods149190194
34. Uhlenhaut C, Kracht M (2005) Viral infectivity is maintained by an RNA protection buffer. J Virol Methods 128: 189–191.C. UhlenhautM. Kracht2005Viral infectivity is maintained by an RNA protection buffer.J Virol Methods128189191
35. Taylor D (2000) Ghana's treetop bats. Bats. D. Taylor2000Ghana's treetop bats.Bats
36. Drexler JF, Kupfer B, Petersen N, Grotto RM, Rodrigues SM, et al. (2009) A novel diagnostic target in the hepatitis C virus genome. PLoS Med 6: e31.JF DrexlerB. KupferN. PetersenRM GrottoSM Rodrigues2009A novel diagnostic target in the hepatitis C virus genome.PLoS Med6e31
37. Nowak RM (1999) Walker's Mammals of the World. JHU Press. 1936 p.RM Nowak1999Walker's Mammals of the World.JHU Press1936
38. Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, et al. (2005) Fruit bats as reservoirs of Ebola virus. Nature 438: 575–576.EM LeroyB. KumulunguiX. PourrutP. RouquetA. Hassanin2005Fruit bats as reservoirs of Ebola virus.Nature438575576
39. Epstein JH, Prakash V, Smith CS, Daszak P, McLaughlin AB, et al. (2008) Henipavirus infection in fruit bats (Pteropus giganteus), India. Emerg Infect Dis 14: 1309–1311.JH EpsteinV. PrakashCS SmithP. DaszakAB McLaughlin2008Henipavirus infection in fruit bats (Pteropus giganteus), India.Emerg Infect Dis1413091311
40. Li W, Shi Z, Yu M, Ren W, Smith C, et al. (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310: 676–679.W. LiZ. ShiM. YuW. RenC. Smith2005Bats are natural reservoirs of SARS-like coronaviruses.Science310676679
41. Plowright RK, Field HE, Smith C, Divljan A, Palmer C, et al. (2008) Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc Biol Sci 275: 861–869.RK PlowrightHE FieldC. SmithA. DivljanC. Palmer2008Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus).Proc Biol Sci275861869
42. Dobson AP (2005) Virology. What links bats to emerging infectious diseases? Science 310: 628–629.AP Dobson2005Virology. What links bats to emerging infectious diseases?Science310628629
43. Baumgarte S, de Souza Luna LK, Grywna K, Panning M, Drexler JF, et al. (2008) Prevalence, types, and RNA concentrations of human parechoviruses, including a sixth parechovirus type, in stool samples from patients with acute enteritis. J Clin Microbiol 46: 242–248.S. BaumgarteLK de Souza LunaK. GrywnaM. PanningJF Drexler2008Prevalence, types, and RNA concentrations of human parechoviruses, including a sixth parechovirus type, in stool samples from patients with acute enteritis.J Clin Microbiol46242248
44. Drexler JF, Luna LK, Stocker A, Almeida PS, Ribeiro TC, et al. (2008) Circulation of 3 lineages of a novel Saffold cardiovirus in humans. Emerg Infect Dis 14: 1398–1405.JF DrexlerLK LunaA. StockerPS AlmeidaTC Ribeiro2008Circulation of 3 lineages of a novel Saffold cardiovirus in humans.Emerg Infect Dis1413981405
45. Drexler JF, Grywna K, Stocker A, Almeida PS, Medrado-Ribeiro TC, et al. (2009) Novel human parechovirus from Brazil. Emerg Infect Dis 15: 310–313.JF DrexlerK. GrywnaA. StockerPS AlmeidaTC Medrado-Ribeiro2009Novel human parechovirus from Brazil.Emerg Infect Dis15310313
46. Middleton DJ, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, et al. (2007) Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus). J Comp Pathol 136: 266–272.DJ MiddletonCJ MorrissyBM van der HeideGM RussellMA Braun2007Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus).J Comp Pathol136266272
47. Mickleburgh S, Waylen K, R P (2009) Bats as bushmeat: a global review. Oryx 43: 217–234.S. MickleburghK. WaylenP. R2009Bats as bushmeat: a global review.Oryx43217234
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2009 Drexler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Background
Henipaviruses (Hendra and Nipah virus) are highly pathogenic members of the family Paramyxoviridae. Fruit-eating bats of the Pteropus genus have been suggested as their natural reservoir. Human Henipavirus infections have been reported in a region extending from Australia via Malaysia into Bangladesh, compatible with the geographic range of Pteropus. These bats do not occur in continental Africa, but a whole range of other fruit bats is encountered. One of the most abundant is Eidolon helvum, the African Straw-coloured fruit bat.
Methodology/Principal Findings
Feces from E. helvum roosting in an urban setting in Kumasi/Ghana were tested for Henipavirus RNA. Sequences of three novel viruses in phylogenetic relationship to known Henipaviruses were detected. Virus RNA concentrations in feces were low.
Conclusions/Significance
The finding of novel putative Henipaviruses outside Australia and Asia contributes a significant extension of the region of potential endemicity of one of the most pathogenic virus genera known in humans.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer