Full text

Turn on search term navigation

© 2009 Sakatani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The receptor for advanced glycation end-products (RAGE) is a multi-ligand receptor that belongs to the immunoglobulin superfamily of cell surface receptors. In diabetes and Alzheimer's disease, pathological progression is accelerated by activation of RAGE. However, how RAGE influences gross behavioral activity patterns in basal condition has not been addressed to date. In search for a functional role of RAGE in normal mice, a series of standard behavioral tests were performed on adult RAGE knockout (KO) mice. We observed a solid increase of home cage activity in RAGE KO. In addition, auditory startle response assessment resulted in a higher sensitivity to auditory signal and increased prepulse inhibition in KO mice. There were no significant differences between KO and wild types in behavioral tests for spatial memory and anxiety, as tested by Morris water maze, classical fear conditioning, and elevated plus maze. Our results raise a possibility that systemic therapeutic treatments to occlude RAGE activation may have adverse effects on general activity levels or sensitivity to auditory stimuli.

Details

Title
Deletion of RAGE Causes Hyperactivity and Increased Sensitivity to Auditory Stimuli in Mice
Author
Sakatani, Seiichi; Yamada, Kazuyuki; Homma, Chihiro; Munesue, Seiichi; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Hirase, Hajime
First page
e8309
Section
Research Article
Publication year
2009
Publication date
Dec 2009
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1292192473
Copyright
© 2009 Sakatani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.