Full Text

Turn on search term navigation

© 2010 Hildenbrand et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Vacuolar ATPases (V-ATPases) are molecular machines responsible for creating electrochemical gradients and preserving pH-dependent cellular compartments by way of proton translocation across the membrane. V-ATPases employ a dynamic rotary mechanism that is driven by ATP hydrolysis and the central rotor stalk. Regulation of this rotational catalysis is the result of a reversible V1Vo-domain dissociation that is required to preserve ATP during instances of cellular starvation. Recently the method by which the free V1-ATPase abrogates the hydrolytic breakdown of ATP upon dissociating from the membrane has become increasingly clear. In this instance the central stalk subunit F adopts an extended conformation to engage in a bridging interaction tethering the rotor and stator components together. However, the architecture by which this mechanism is stabilized has remained ambiguous despite previous work. In an effort to elucidate the method by which the rotational catalysis is maintained, the architecture of the peripheral stalks and their respective binding interactions was investigated using cryo-electron microscopy. In addition to confirming the bridging interaction exuded by subunit F for the first time in a eukaryotic V-ATPase, subunits C and H are seen interacting with one another in a tight interaction that provides a base for the three EG peripheral stalks. The formation of a CE3G3H sub-assembly appears to be unique to the dissociated V-ATPase and highlights the stator architecture in addition to revealing a possible intermediate in the assembly mechanism of the free V1-ATPase.

Details

Title
The C-H Peripheral Stalk Base: A Novel Component in V1-ATPase Assembly
Author
Hildenbrand, Zacariah L; Molugu, Sudheer K; Stock, Daniela; Bernal, Ricardo A
First page
e12588
Section
Research Article
Publication year
2010
Publication date
Sep 2010
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1292292050
Copyright
© 2010 Hildenbrand et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.