Full text

Turn on search term navigation

© 2010 Ye et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Large efforts have been taken to search for genes responsible for type 2 diabetes (T2D), but have resulted in only about 20 in humans due to its complexity and heterogeneity. The GK rat, a spontanous T2D model, offers us a superior opportunity to search for more diabetic genes. Utilizing array comparative genome hybridization (aCGH) technology, we identifed 137 non-redundant copy number variation (CNV) regions from the GK rats when using normal Wistar rats as control. These CNV regions (CNVRs) covered approximately 36 Mb nucleotides, accounting for about 1% of the whole genome. By integrating information from gene annotations and disease knowledge, we investigated the CNVRs comprehensively for mining new T2D genes. As a result, we prioritized 16 putative protein-coding genes and two microRNA genes (rno-mir-30b and rno-mir-30d) as good candidates. The catalogue of CNVRs between GK and Wistar rats identified in this work served as a repository for mining genes that might play roles in the pathogenesis of T2D. Moreover, our efforts in utilizing bioinformatics methods to prioritize good candidate genes provided a more specific set of putative candidates. These findings would contribute to the research into the genetic basis of T2D, and thus shed light on its pathogenesis.

Details

Title
Analyses of Copy Number Variation of GK Rat Reveal New Putative Type 2 Diabetes Susceptibility Loci
Author
Zhi-Qiang Ye; Niu, Shen; Yang, Yu; Yu, Hui; Bao-Hong, Liu; Rong-Xia, Li; Hua-Sheng, Xiao; Zeng, Rong; Yi-Xue, Li; Jia-Rui, Wu; Yuan-Yuan, Li
First page
e14077
Section
Research Article
Publication year
2010
Publication date
Nov 2010
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1292304631
Copyright
© 2010 Ye et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.