Full text

Turn on search term navigation

© 2009 Chenu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Pressure sores are localized injuries to the skin and underlying tissues and are mainly resulting from overpressure. Paraplegic peoples are particularly subjects to pressure sores because of long-time seated postures and sensory deprivation at the lower limbs.

Methodology/Principal Findings

Here we report outcomes of a feasibility trial involving a biofeedback system aimed at reducing buttock overpressure whilst an individual is seated. The system consists of (1) pressure sensors, (2) a laptop coupling sensors and actuator (3) a wireless Tongue Display Unit (TDU) consisting of a circuit embedded in a dental retainer with electrodes put in contact with the tongue. The principle consists in (1) detecting overpressures in people who are seated over long periods of time, (2) estimating a postural change that could reduce these overpressures and (3) communicating this change through directional information transmitted by the TDU.Twenty-four healthy subjects voluntarily participated in this study. Twelve healthy subjects initially formed the experimental group (EG) and were seated on a chair with the wireless TDU inside their mouth. They were asked to follow TDU orders that were randomly spread throughout the session. They were evaluated during two experimental sessions during which 20 electro-stimulations were sent. Twelve other subjects, added retrospectively, formed the control group (CG). These subjects participated in one session of the same experiment without any biofeedback.Three dependent variables were computed: (1) the ability of subjects to reach target posture (EG versus CG), (2) high pressure reductions after a biofeedback (EG versus CG) and (3) the level of these reductions relative to their initial values (EG only). Results show (1) that EG reached target postures in 90.2% of the trials, against 5,3% in the CG, (2) a significant reduction in overpressures in the EG compared to the CG and (3), for the EG, that the higher the initial pressures were, the more they were decreased.

Conclusions/Significance

The findings suggest that, in this trial, subjects were able to use a tongue tactile feedback system to reduce buttock overpressure while seated. Further evaluation of this system on paraplegic subjects remains to be done.

Details

Title
A Wireless Lingual Feedback Device to Reduce Overpressures in Seated Posture: A Feasibility Study
Author
Chenu, Olivier; Vuillerme, Nicolas; Demongeot, Jacques; Payan, Yohan
First page
e7550
Section
Research Article
Publication year
2009
Publication date
Oct 2009
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1292465457
Copyright
© 2009 Chenu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.