Full text

Turn on search term navigation

© 2010 Hofmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The TRPM group of cation channels plays diverse roles ranging from sensory signaling to Mg2+ homeostasis. In most metazoan organisms the TRPM subfamily is comprised of multiple members, including eight in humans. However, the Drosophila TRPM subfamily is unusual in that it consists of a single member. Currently, the functional requirements for this channel have not been reported. Here, we found that the Drosophila TRPM protein was expressed in the fly counterpart of mammalian kidneys, the Malpighian tubules, which function in the removal of electrolytes and toxic components from the hemolymph. We generated mutations in trpm and found that this resulted in shortening of the Malpighian tubules. In contrast to all other Drosophila trp mutations, loss of trpm was essential for viability, as trpm mutations resulted in pupal lethality. Supplementation of the diet with a high concentration of Mg2+ exacerbated the phenotype, resulting in growth arrest during the larval period. Feeding high Mg2+ also resulted in elevated Mg2+ in the hemolymph, but had relatively little effect on cellular Mg2+. We conclude that loss of Drosophila trpm leads to hypermagnesemia due to a defect in removal of Mg2+ from the hemolymph. These data provide the first evidence for a role for a Drosophila TRP channel in Mg2+ homeostasis, and underscore a broad and evolutionarily conserved role for TRPM channels in Mg2+ homeostasis.

Details

Title
Drosophila TRPM Channel Is Essential for the Control of Extracellular Magnesium Levels
Author
Hofmann, Thomas; Chubanov, Vladimir; Chen, Xiaodi; Dietz, Anna S; Gudermann, Thomas; Montell, Craig
First page
e10519
Section
Research Article
Publication year
2010
Publication date
May 2010
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1292582611
Copyright
© 2010 Hofmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.