Full text

Turn on search term navigation

© 2010 Sun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Chromosome translocations induced by DNA damaging agents, such as ionizing radiation and certain chemotherapies, alter genetic information resulting in malignant transformation. Abrogation or loss of the ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, increases the incidence of chromosome translocations. However, how ATM protects cells from chromosome translocations is still unclear. Chromosome translocations involving the MLL gene on 11q23 are the most frequent chromosome abnormalities in secondary leukemias associated with chemotherapy employing etoposide, a topoisomerase II poison. Here we show that ATM deficiency results in the excessive binding of the DNA recombination protein RAD51 at the translocation breakpoint hotspot of 11q23 chromosome translocation after etoposide exposure. Binding of Replication protein A (RPA) and the chromatin remodeler INO80, which facilitate RAD51 loading on damaged DNA, to the hotspot were also increased by ATM deficiency. Thus, in addition to activating DNA damage signaling, ATM may avert chromosome translocations by preventing excessive loading of recombinational repair proteins onto translocation breakpoint hotspots.

Details

Title
ATM Modulates the Loading of Recombination Proteins onto a Chromosomal Translocation Breakpoint Hotspot
Author
Sun, Jiying; Oma, Yukako; Harata, Masahiko; Kono, Kazuteru; Shima, Hiroki; Kinomura, Aiko; Ikura, Tsuyoshi; Suzuki, Hidekazu; Mizutani, Shuki; Kanaar, Roland; Tashiro, Satoshi
First page
e13554
Section
Research Article
Publication year
2010
Publication date
Oct 2010
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1292659834
Copyright
© 2010 Sun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.