Full text

Turn on search term navigation

© 2011 Walker et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The demonstration of the brain's ability to initiate repair in response to disease or injury has sparked considerable interest in therapeutic strategies to stimulate adult neurogenesis. In this study we examined the effect of a progressive neurodegenerative condition on neural precursor activity in the subventricular zone (SVZ) and hippocampus of the R6/1 transgenic mouse model of Huntington's disease (HD). Our results revealed an age-related decline in SVZ precursor numbers in both wild-type (WT) and HD mice. Interestingly, hippocampal precursor numbers declined with age in WT mice, although we observed maintenance in hippocampal precursor number in the HD animals in response to advancement of the disease. This maintenance was consistent with activation of a recently identified latent hippocampal precursor population. We found that the small latent stem cell population was also maintained in the HD hippocampus at 33 weeks, whereas it was not present in the WT. Our findings demonstrate that, despite a loss of neurogenesis in the HD hippocampus in vivo, there is a unique maintenance of the precursor and stem cells, which may potentially be activated to ameliorate disease symptoms.

Details

Title
The Latent Stem Cell Population Is Retained in the Hippocampus of Transgenic Huntington's Disease Mice but Not Wild-Type Mice
Author
Walker, Tara L; Turnbull, Geoff W; Mackay, Eirinn W; Hannan, Anthony J; Bartlett, Perry F
First page
e18153
Section
Research Article
Publication year
2011
Publication date
Mar 2011
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1292874139
Copyright
© 2011 Walker et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.