Full Text

Turn on search term navigation

© 2011 Zehendner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Tight-junction (TJ) protein degradation is a decisive step in hypoxic blood-brain barrier (BBB) breakdown in stroke. In this study we elucidated the impact of acute cerebral ischemia on TJ protein arrangement and the role of the apoptotic effector protease caspase-3 in this context.

Methodology/Principal Findings

We used an in vitro model of the neurovascular unit and the guinea pig whole brain preparation to analyze with immunohistochemical methods the BBB properties and neurovascular integrity. In both methodological approaches we observed rapid TJ protein disruptions after 30 min of oxygen and glucose deprivation or middle cerebral artery occlusion, which were accompanied by strong caspase-3 activation in brain endothelial cells (BEC). Surprisingly only few DNA-fragmentations were detected with TUNEL stainings in BEC. Z-DEVD-fmk, an irreversible caspase-3 inhibitor, partly blocked TJ disruptions and was protective on trans-endothelial electrical resistance.

Conclusions/Significance

Our data provide evidence that caspase-3 is rapidly activated during acute cerebral ischemia predominantly without triggering DNA-fragmentation in BEC. Further we detected fast TJ protein disruptions which could be partly blocked by caspase-3 inhibition with Z-DEVD-fmk. We suggest that the basis for clinically relevant BBB breakdown in form of TJ disruptions is initiated within minutes during ischemia and that caspase-3 contributes to this process.

Details

Title
Caspase-3 Contributes to ZO-1 and Cl-5 Tight-Junction Disruption in Rapid Anoxic Neurovascular Unit Damage
Author
Zehendner, Christoph M; Librizzi, Laura; de Curtis, Marco; Kuhlmann, Christoph R W; Luhmann, Heiko J
First page
e16760
Section
Research Article
Publication year
2011
Publication date
Feb 2011
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1296499827
Copyright
© 2011 Zehendner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.