Full text

Turn on search term navigation

Copyright Public Library of Science May 2011

Abstract

Background

After ischemia of the CNS, extracellular adenosine 5′-triphosphate (ATP) can reach high concentrations due to cell damage and subsequent increase of membrane permeability. ATP may cause cellular degeneration and death, mediated by P2X and P2Y receptors.

Methodology/Principal Findings

The effects of inhibition of P2 receptors by pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS) on electrophysiological, functional and morphological alterations in an ischemia model with permanent middle cerebral artery occlusion (MCAO) were investigated up to day 28. Spontaneously hypertensive rats received PPADS or vehicle intracerebroventricularly 15 minutes prior MCAO for up to 7 days. The functional recovery monitored by qEEG was improved by PPADS indicated by an accelerated recovery of ischemia-induced qEEG changes in the delta and alpha frequency bands along with a faster and sustained recovery of motor impairments. Whereas the functional improvements by PPADS were persistent at day 28, the infarct volume measured by magnetic resonance imaging and the amount of TUNEL-positive cells were significantly reduced by PPADS only until day 7. Further, by immunohistochemistry and confocal laser scanning microscopy, we identified both neurons and astrocytes as TUNEL-positive after MCAO.

Conclusion

The persistent beneficial effect of PPADS on the functional parameters without differences in the late (day 28) infarct size and apoptosis suggests that the early inhibition of P2 receptors might be favourable for the maintenance or early reconstruction of neuronal connectivity in the periinfarct area after ischemic incidents.

Details

Title
The P2 Receptor Antagonist PPADS Supports Recovery from Experimental Stroke In Vivo
Author
Lämmer, Alexandra B; Beck, Alexander; Grummich, Benjamin; Förschler, Annette; Krügel, Thomas; Kahn, Thomas; Schneider, Dietmar; Illes, Peter; Franke, Heike; Krügel, Ute
First page
e19983
Section
Research Article
Publication year
2011
Publication date
May 2011
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1298564140
Copyright
Copyright Public Library of Science May 2011