Full Text

Turn on search term navigation

© 2011 Auburn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Highly parallel sequencing technologies permit cost-effective whole genome sequencing of hundreds of Plasmodium parasites. The ability to sequence clinical Plasmodium samples, extracted directly from patient blood without a culture step, presents a unique opportunity to sample the diversity of “natural” parasite populations in high resolution clinical and epidemiological studies. A major challenge to sequencing clinical Plasmodium samples is the abundance of human DNA, which may substantially reduce the yield of Plasmodium sequence. We tested a range of human white blood cell (WBC) depletion methods on P. falciparum-infected patient samples in search of a method displaying an optimal balance of WBC-removal efficacy, cost, simplicity, and applicability to low resource settings. In the first of a two-part study, combinations of three different WBC depletion methods were tested on 43 patient blood samples in Mali. A two-step combination of Lymphoprep plus Plasmodipur best fitted our requirements, although moderate variability was observed in human DNA quantity. This approach was further assessed in a larger sample of 76 patients from Burkina Faso. WBC-removal efficacy remained high (<30% human DNA in >70% samples) and lower variation was observed in human DNA quantities. In order to assess the Plasmodium sequence yield at different human DNA proportions, 59 samples with up to 60% human DNA contamination were sequenced on the Illumina Genome Analyzer platform. An average ∼40-fold coverage of the genome was observed per lane for samples with ≤30% human DNA. Even in low resource settings, using a simple two-step combination of Lymphoprep plus Plasmodipur, over 70% of clinical sample preparations should exhibit sufficiently low human DNA quantities to enable ∼40-fold sequence coverage of the P. falciparum genome using a single lane on the Illumina Genome Analyzer platform. This approach should greatly facilitate large-scale clinical and epidemiologic studies of P. falciparum.

Details

Title
An Effective Method to Purify Plasmodium falciparum DNA Directly from Clinical Blood Samples for Whole Genome High-Throughput Sequencing
Author
Auburn, Sarah; Campino, Susana; Clark, Taane G; Djimde, Abdoulaye A; Zongo, Issaka; Pinches, Robert; Manske, Magnus; Mangano, Valentina; Alcock, Daniel; Anastasi, Elisa; Maslen, Gareth; MacInnis, Bronwyn; Rockett, Kirk; Modiano, David; Newbold, Christopher I; Doumbo, Ogobara K; Jean Bosco Ouédraogo; Kwiatkowski, Dominic P
First page
e22213
Section
Research Article
Publication year
2011
Publication date
Jul 2011
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1306249068
Copyright
© 2011 Auburn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.