Full text

Turn on search term navigation

© 2011 Serra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The successful implementation of human embryonic stem cells (hESCs)-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D) culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i) single cells, ii) aggregates and iii) immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors.

The combination of microencapsulation and microcarrier technology resulted in a highly efficient protocol for the production and storage of pluripotent hESCs. This strategy ensured high expansion ratios (an approximately twenty-fold increase in cell concentration) and high cell recovery yields (>70%) after cryopreservation. When compared with non-encapsulated cells, cell survival post-thawing demonstrated a three-fold improvement without compromising hESC characteristics.

Microencapsulation also improved the culture of hESC aggregates by protecting cells from hydrodynamic shear stress, controlling aggregate size and maintaining cell pluripotency for two weeks.

This work establishes that microencapsulation technology may prove a powerful tool for integrating the expansion and cryopreservation of pluripotent hESCs. The 3D culture strategy developed herein represents a significant breakthrough towards the implementation of hESCs in clinical and industrial applications.

Details

Title
Microencapsulation Technology: A Powerful Tool for Integrating Expansion and Cryopreservation of Human Embryonic Stem Cells
Author
Serra, Margarida; Correia, Cláudia; Malpique, Rita; Brito, Catarina; Jensen, Janne; Bjorquist, Petter; Carrondo, Manuel J T; Alves, Paula M
First page
e23212
Section
Research Article
Publication year
2011
Publication date
Aug 2011
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1307254334
Copyright
© 2011 Serra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.