Full Text

Turn on search term navigation

© 2011 Abel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Vectors based on γ-retroviruses or lentiviruses have been shown to stably express therapeutical transgenes and effectively cure different hematological diseases. Molecular follow up of the insertional repertoire of gene corrected cells in patients and preclinical animal models revealed different integration preferences in the host genome including clusters of integrations in small genomic areas (CIS; common integrations sites). In the majority, these CIS were found in or near genes, with the potential to influence the clonal fate of the affected cell. To determine whether the observed degree of clustering is statistically compatible with an assumed standard model of spatial distribution of integrants, we have developed various methods and computer programs for γ-retroviral and lentiviral integration site distribution. In particular, we have devised and implemented mathematical and statistical approaches for comparing two experimental samples with different numbers of integration sites with respect to the propensity to form CIS as well as for the analysis of coincidences of integration sites obtained from different blood compartments. The programs and statistical tools described here are available as workspaces in R code and allow the fast detection of excessive clustering of integration sites from any retrovirally transduced sample and thus contribute to the assessment of potential treatment-related risks in preclinical and clinical retroviral gene therapy studies.

Details

Title
Analyzing the Number of Common Integration Sites of Viral Vectors – New Methods and Computer Programs
Author
Abel, Ulrich; Deichmann, Annette; Nowrouzi, Ali; Gabriel, Richard; Bartholomae, Cynthia C; Glimm, Hanno; Christof von Kalle; Schmidt, Manfred
First page
e24247
Section
Research Article
Publication year
2011
Publication date
Oct 2011
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1309451325
Copyright
© 2011 Abel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.