Full text

Turn on search term navigation

© 2011 Gutierrez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Large brains relative to body size represent an evolutionarily costly adaptation as they are metabolically expensive and demand substantial amounts of time to reach structural and functional maturity thereby exacerbating offspring mortality while delaying reproductive age. In spite of its cost and adaptive impact, no genomic features linked to brain evolution have been found. By conducting a genome-wide analysis in all 37 fully sequenced mammalian genomes, we show that encephalization is significantly correlated with overall protein amino acid composition. This correlation is not a by-product of changes in nucleotide content, lifespan, body size, absolute brain size or genome size; is independent of phylogenetic effects; and is not restricted to brain expressed genes. This is the first report of a relationship between this fundamental and complex trait and changes in protein AA usage, possibly reflecting the high selective demands imposed by the process of encephalization across mammalian lineages.

Details

Title
Protein Amino Acid Composition: A Genomic Signature of Encephalization in Mammals
Author
Gutierrez, Humberto; Castillo, Atahualpa; Monzon, Jimena; Urrutia, Araxi O
First page
e27261
Section
Research Article
Publication year
2011
Publication date
Nov 2011
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1310231611
Copyright
© 2011 Gutierrez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.