Full text

Turn on search term navigation

© 2011 Lin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Agonists of GPR40 (FFA1) have been proposed as a means to treat type 2 diabetes. Through lead optimization of a high throughput screening hit, we have identified a novel GPR40 agonist called AMG 837. The objective of these studies was to understand the preclinical pharmacological properties of AMG 837. The activity of AMG 837 on GPR40 was characterized through GTPγS binding, inositol phosphate accumulation and Ca2+ flux assays. Activity of AMG 837 on insulin release was assessed on isolated primary mouse islets. To determine the anti-diabetic activity of AMG 837 in vivo, we tested AMG 837 using a glucose tolerance test in normal Sprague-Dawley rats and obese Zucker fatty rats. AMG 837 was a potent partial agonist in the calcium flux assay on the GPR40 receptor and potentiated glucose stimulated insulin secretion in vitro and in vivo. Acute administration of AMG 837 lowered glucose excursions and increased glucose stimulated insulin secretion during glucose tolerance tests in both normal and Zucker fatty rats. The improvement in glucose excursions persisted following daily dosing of AMG 837 for 21-days in Zucker fatty rats. Preclinical studies demonstrated that AMG 837 was a potent GPR40 partial agonist which lowered post-prandial glucose levels. These studies support the potential utility of AMG 837 for the treatment of type 2 diabetes.

Details

Title
AMG 837: A Novel GPR40/FFA1 Agonist that Enhances Insulin Secretion and Lowers Glucose Levels in Rodents
Author
Lin, Daniel C-H; Zhang, Jane; Zhuang, Run; Li, Frank; Nguyen, Kathy; Chen, Michael; Tran, Thanhvien; Lopez, Edwin; Lin Lu, Jenny Ying; Li, Xiaoyan Nina; Tang, Liang; Tonn, George R; Swaminath, Gayathri; Reagan, Jeff D; Jin-Long, Chen; Tian, Hui; Yi-Jyun Lin; Houze, Jonathan B; Luo, Jian
First page
e27270
Section
Research Article
Publication year
2011
Publication date
Nov 2011
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1310772371
Copyright
© 2011 Lin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.