Full Text

Turn on search term navigation

© 2011 Sahana et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Introduction

The state-of-the-art for dealing with multiple levels of relationship among the samples in genome-wide association studies (GWAS) is unified mixed model analysis (MMA). This approach is very flexible, can be applied to both family-based and population-based samples, and can be extended to incorporate other effects in a straightforward and rigorous fashion. Here, we present a complementary approach, called ‘GENMIX (genealogy based mixed model)’ which combines advantages from two powerful GWAS methods: genealogy-based haplotype grouping and MMA.

Subjects and Methods

We validated GENMIX using genotyping data of Danish Jersey cattle and simulated phenotype and compared to the MMA. We simulated scenarios for three levels of heritability (0.21, 0.34, and 0.64), seven levels of MAF (0.05, 0.10, 0.15, 0.20, 0.25, 0.35, and 0.45) and five levels of QTL effect (0.1, 0.2, 0.5, 0.7 and 1.0 in phenotypic standard deviation unit). Each of these 105 possible combinations (3 h2 x 7 MAF x 5 effects) of scenarios was replicated 25 times.

Results

GENMIX provides a better ranking of markers close to the causative locus' location. GENMIX outperformed MMA when the QTL effect was small and the MAF at the QTL was low. In scenarios where MAF was high or the QTL affecting the trait had a large effect both GENMIX and MMA performed similarly.

Conclusion

In discovery studies, where high-ranking markers are identified and later examined in validation studies, we therefore expect GENMIX to enrich candidates brought to follow-up studies with true positives over false positives more than the MMA would.

Details

Title
Local Genealogies in a Linear Mixed Model for Genome-Wide Association Mapping in Complex Pedigreed Populations
Author
Sahana, Goutam; Mailund, Thomas; Lund, Mogens Sandø; Guldbrandtsen, Bernt
First page
e27061
Section
Research Article
Publication year
2011
Publication date
Nov 2011
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1310947309
Copyright
© 2011 Sahana et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.