Full text

Turn on search term navigation

© 2011 Chen, Lee. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Randomization is a hallmark of clinical trials. If a trial entails very few subjects and has many prognostic factors (or many factor levels) to be balanced, minimization is a more efficient method to achieve balance than a simple randomization. We propose a novel minimization method, the ‘two-way minimization’. The method separately calculates the ‘imbalance in the total numbers of subjects’ and the ‘imbalance in the distributions of prognostic factors’. And then to allocate a subject, it chooses—by probability—to minimize either one of these two aspects of imbalances. As such, it is a method that is both treatment-adaptive and covariate-adaptive. We perform Monte-Carlo simulations to examine its statistical properties. The two-way minimization (with proper regression adjustment of the force-balanced prognostic factors) has the correct type I error rates. It also produces point estimates that are unbiased and variance estimates that are accurate. When there are important prognostic factors to be balanced in the study, the method achieves the highest power and the smallest variance among randomization methods that are resistant to selection bias. The allocation can be done in real time and the subsequent data analysis is straightforward. The two-way minimization is recommended to balance prognostic factors in small trials.

Details

Title
Two-Way Minimization: A Novel Treatment Allocation Method for Small Trials
Author
Lan-Hsin, Chen; Wen-Chung, Lee
First page
e28604
Section
Research Article
Publication year
2011
Publication date
Dec 2011
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1311356974
Copyright
© 2011 Chen, Lee. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.