Full text

Turn on search term navigation

© 2008 Galli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Mitochondria are major cellular sources of hydrogen peroxide (H2O2), the production of which is modulated by oxygen availability and the mitochondrial energy state. An increase of steady-state cell H2O2 concentration is able to control the transition from proliferating to quiescent phenotypes and to signal the end of proliferation; in tumor cells thereby, low H2O2 due to defective mitochondrial metabolism can contribute to sustain proliferation. Mitogen-activated protein kinases (MAPKs) orchestrate signal transduction and recent data indicate that are present in mitochondria and regulated by the redox state. On these bases, we investigated the mechanistic connection of tumor mitochondrial dysfunction, H2O2 yield, and activation of MAPKs in LP07 murine tumor cells with confocal microscopy, in vivo imaging and directed mutagenesis. Two redox conditions were examined: low 1 µM H2O2 increased cell proliferation in ERK1/2-dependent manner whereas high 50 µM H2O2 arrested cell cycle by p38 and JNK1/2 activation. Regarding the experimental conditions as a three-compartment model (mitochondria, cytosol, and nuclei), the different responses depended on MAPKs preferential traffic to mitochondria, where a selective activation of either ERK1/2 or p38-JNK1/2 by co-localized upstream kinases (MAPKKs) facilitated their further passage to nuclei. As assessed by mass spectra, MAPKs activation and efficient binding to cognate MAPKKs resulted from oxidation of conserved ERK1/2 or p38-JNK1/2 cysteine domains to sulfinic and sulfonic acids at a definite H2O2 level. Like this, high H2O2 or directed mutation of redox-sensitive ERK2 Cys214 impeded binding to MEK1/2, caused ERK2 retention in mitochondria and restricted shuttle to nuclei. It is surmised that selective cysteine oxidations adjust the electrostatic forces that participate in a particular MAPK-MAPKK interaction. Considering that tumor mitochondria are dysfunctional, their inability to increase H2O2 yield should disrupt synchronized MAPK oxidations and the regulation of cell cycle leading cells to remain in a proliferating phenotype.

Details

Title
Tumor Cell Phenotype Is Sustained by Selective MAPK Oxidation in Mitochondria
Author
Galli, Soledad; Valeria Gabriela Antico Arciuch; Poderoso, Cecilia; Converso, Daniela Paola; Zhou, Qiongqiong; Elisa Bal de Kier Joffé; Cadenas, Enrique; Boczkowski, Jorge; Carreras, María Cecilia; Poderoso, Juan José
First page
e2379
Section
Research Article
Publication year
2008
Publication date
Jun 2008
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1312288899
Copyright
© 2008 Galli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.