Full Text

Turn on search term navigation

© 2008 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The RAS small GTPases orchestrate multiple cellular processes. Studies on knock-out mice showed the essential and sufficient role of K-RAS, but not N-RAS and H-RAS in embryonic development. However, many physiological functions of K-RAS in vivo remain unclear. Using wild-type and fli1:GFP transgenic zebrafish, we showed that K-ras-knockdown resulted in specific hematopoietic and angiogenic defects, including the impaired expression of erythroid-specific gene gata1 and ße3-hemoglobin, reduced blood circulation and disorganized blood vessels. Expression of either K-rasC40 that links to phosphoinositide 3-kinase (PI3K) activation, or Akt2 that acts downstream of PI3K, could rescue both hematopoietic and angiogenic defects in the K-ras knockdown. Consistently, the functional rescue by k-ras mRNA was significantly suppressed by wortmannin, a PI3K-specific inhibitor. Our results provide direct evidence that PI3K-Akt plays a crucial role in mediating K-ras signaling during hematopoiesis and angiogenesis in vivo, thus offering new targets and alternative vertebrate model for studying these processes and their related diseases.

Details

Title
K-ras/PI3K-Akt Signaling Is Essential for Zebrafish Hematopoiesis and Angiogenesis
Author
Liu, Lihui; Zhu, Shizhen; Gong, Zhiyuan; Low, Boon Chuan
First page
e2850
Section
Research Article
Publication year
2008
Publication date
Aug 2008
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1312295590
Copyright
© 2008 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.