Full Text

Turn on search term navigation

© 2008 Bartolazzi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

The prevalence of thyroid nodules increases with age, average 4–7% for the U.S.A. adult population, but it is much higher (19–67%) when sub-clinical nodules are considered. About 90% of these lesions are benign and a reliable approach to their preoperative characterization is necessary. Unfortunately conventional thyroid scintigraphy does not allow the distinction among benign and malignant thyroid proliferations but it provides only functional information (cold or hot nodules).

The expression of the anti-apoptotic molecule galectin-3 is restricted to cancer cells and this feature has potential diagnostic and therapeutic implications. We show here the possibility to obtain thyroid cancer imaging in vivo by targeting galectin-3.

Methods

The galectin-3 based thyroid immuno-scintigraphy uses as radiotracer a specific 99mTc-radiolabeled mAb. A position-sensitive high-resolution mini-gamma camera was used as imaging capture device. Human galectin-3 positive thyroid cancer xenografts (ARO) and galectin-3 knockout tumors were used as targets in different experiments in vivo. 38 mice with tumor mass of about 1 gm were injected in the tail vein with 100 µCi of 99mTc-labeled mAb to galectin-3 (30 µg protein/in 100 µl saline solution). Tumor images were acquired at 1 hr, 3 hrs, 6 hrs, 9 hrs and 24 hrs post injection by using the mini-gamma camera.

Findings

Results from different consecutive experiments show an optimal visualization of thyroid cancer xenografts between 6 and 9 hours from injection of the radiotracer. Galectin-3 negative tumors were not detected at all. At 6 hrs post-injection galectin-3 expressing tumors were correctly visualized, while the whole-body activity had essentially cleared.

Conclusions

These results demonstrate the possibility to distinguish preoperatively benign from malignant thyroid nodules by using a specific galectin-3 radio-immunotargeting. In vivo imaging of thyroid cancer may allow a better selection of patients referred to surgery. The possibility to apply this method for imaging and treatment of other galectin-3 expressing tumors is also discussed.

Details

Title
Thyroid Cancer Imaging In Vivo by Targeting the Anti-Apoptotic Molecule Galectin-3
Author
Bartolazzi, Armando; D'Alessandria, Calogero; Maria Gemma Parisella; Signore, Alberto; Fabrizio Del Prete; Lavra, Luca; Braesch-Andersen, Sten; Massari, Roberto; Trotta, Carlo; Soluri, Alessandro; Sciacchitano, Salvatore; Scopinaro, Francesco
First page
e3768
Section
Research Article
Publication year
2008
Publication date
Nov 2008
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1312311516
Copyright
© 2008 Bartolazzi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.