Full Text

Turn on search term navigation

© 2005 Ringnér and Krogh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ringnér M, Krogh M (2005) Folding Free Energies of 5?-UTRs Impact Post-Transcriptional Regulation on a Genomic Scale in Yeast. PLoS Comput Biol 1(7): e72. doi:10.1371/journal.pcbi.0010072

Abstract

Using high-throughput technologies, abundances and other features of genes and proteins have been measured on a genome-wide scale in Saccharomyces cerevisiae. In contrast, secondary structure in 5'-untranslated regions (UTRs) of mRNA has only been investigated for a limited number of genes. Here, the aim is to study genome-wide regulatory effects of mRNA 5'-UTR folding free energies. We performed computations of secondary structures in 5'-UTRs and their folding free energies for all verified genes in S. cerevisiae. We found significant correlations between folding free energies of 5'-UTRs and various transcript features measured in genome-wide studies of yeast. In particular, mRNAs with weakly folded 5'-UTRs have higher translation rates, higher abundances of the corresponding proteins, longer half-lives, and higher numbers of transcripts, and are upregulated after heat shock. Furthermore, 5'-UTRs have significantly higher folding free energies than other genomic regions and randomized sequences. We also found a positive correlation between transcript half-life and ribosome occupancy that is more pronounced for short-lived transcripts, which supports a picture of competition between translation and degradation. Among the genes with strongly folded 5'-UTRs, there is a huge overrepresentation of uncharacterized open reading frames. Based on our analysis, we conclude that (i) there is a widespread bias for 5'-UTRs to be weakly folded, (ii) folding free energies of 5'-UTRs are correlated with mRNA translation and turnover on a genomic scale, and (iii) transcripts with strongly folded 5'-UTRs are often rare and hard to find experimentally.

Details

Title
Folding Free Energies of 5'-UTRs Impact Post-Transcriptional Regulation on a Genomic Scale in Yeast
Author
Ringnér, Markus; Krogh, Morten
Pages
e72
Section
Research Article
Publication year
2005
Publication date
Dec 2005
Publisher
Public Library of Science
ISSN
1553734X
e-ISSN
15537358
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1312437614
Copyright
© 2005 Ringnér and Krogh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ringnér M, Krogh M (2005) Folding Free Energies of 5?-UTRs Impact Post-Transcriptional Regulation on a Genomic Scale in Yeast. PLoS Comput Biol 1(7): e72. doi:10.1371/journal.pcbi.0010072