Full Text

Turn on search term navigation

© 2012 Ament et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ament SA, Wang Y, Chen C-C, Blatti CA, Hong F, et al. (2012) The Transcription Factor Ultraspiracle Influences Honey Bee Social Behavior and Behavior-Related Gene Expression. PLoS Genet 8(3): e1002596. doi:10.1371/journal.pgen.1002596

Abstract

Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily "nursing" brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP-chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH- and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how "single gene effects" on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues.

Details

Title
The Transcription Factor Ultraspiracle Influences Honey Bee Social Behavior and Behavior-Related Gene Expression
Author
Ament, Seth A; Wang, Ying; Chen, Chieh-Chun; Blatti, Charles A; Hong, Feng; Liang, Zhengzheng S; Negre, Nicolas; White, Kevin P; Rodriguez-Zas, Sandra L; Mizzen, Craig A; Sinha, Saurabh; Zhong, Sheng; Robinson, Gene E
Section
Research Article
Publication year
2012
Publication date
Mar 2012
Publisher
Public Library of Science
ISSN
15537390
e-ISSN
15537404
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1313518441
Copyright
© 2012 Ament et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ament SA, Wang Y, Chen C-C, Blatti CA, Hong F, et al. (2012) The Transcription Factor Ultraspiracle Influences Honey Bee Social Behavior and Behavior-Related Gene Expression. PLoS Genet 8(3): e1002596. doi:10.1371/journal.pgen.1002596