Full text

Turn on search term navigation

© 2011 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, et al. (2011) The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri. PLoS Genet 7(2): e1001314. doi:10.1371/journal.pgen.1001314

Abstract

Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process.

Details

Title
The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri
Author
Frese, Steven A; Benson, Andrew K; Tannock, Gerald W; Loach, Diane M; Kim, Jaehyoung; Zhang, Min; Oh, Phaik Lyn; Heng, Nicholas CK; Patil, Prabhu B; Juge, Nathalie; MacKenzie, Donald A; Pearson, Bruce M; Lapidus, Alla; Dalin, Eileen; Tice, Hope; Goltsman, Eugene; Land, Miriam; Hauser, Loren; Ivanova, Natalia; Kyrpides, Nikos C; Walter, Jens
Section
Research Article
Publication year
2011
Publication date
Feb 2011
Publisher
Public Library of Science
ISSN
15537390
e-ISSN
15537404
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1313541983
Copyright
© 2011 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, et al. (2011) The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri. PLoS Genet 7(2): e1001314. doi:10.1371/journal.pgen.1001314