Full text

Turn on search term navigation

© 2011 Van Tyne et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Van Tyne D, Park DJ, Schaffner SF, Neafsey DE, Angelino E, et al. (2011) Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in Plasmodium falciparum. PLoS Genet 7(4): e1001383. doi:10.1371/journal.pgen.1001383

Abstract

The Plasmodium falciparum parasite's ability to adapt to environmental pressures, such as the human immune system and antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis of these adaptations is critical to intervening successfully against malaria. To that end, we created a high-density genotyping array that assays over 17,000 single nucleotide polymorphisms (~1 SNP/kb), and applied it to 57 culture-adapted parasites from three continents. We characterized genome-wide genetic diversity within and between populations and identified numerous loci with signals of natural selection, suggesting their role in recent adaptation. In addition, we performed a genome-wide association study (GWAS), searching for loci correlated with resistance to thirteen antimalarials; we detected both known and novel resistance loci, including a new halofantrine resistance locus, PF10_0355. Through functional testing we demonstrated that PF10_0355 overexpression decreases sensitivity to halofantrine, mefloquine, and lumefantrine, but not to structurally unrelated antimalarials, and that increased gene copy number mediates resistance. Our GWAS and follow-on functional validation demonstrate the potential of genome-wide studies to elucidate functionally important loci in the malaria parasite genome.

Details

Title
Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in Plasmodium falciparum
Author
Tyne, Daria Van; Park, Daniel J; Schaffner, Stephen F; Neafsey, Daniel E; Angelino, Elaine; Cortese, Joseph F; Barnes, Kayla G; Rosen, David M; Lukens, Amanda K; Daniels, Rachel F; Jr, Danny AMilner; Johnson, Charles A; Shlyakhter, Ilya; Grossman, Sharon R; Becker, Justin S; Yamins, Daniel; Karlsson, Elinor K; Ndiaye, Daouda; Sarr, Ousmane; Mboup, Souleymane; Happi, Christian; Furlotte, Nicholas A; Eskin, Eleazar; Kang, Hyun Min; Hartl, Daniel L; Birren, Bruce W; Wiegand, Roger C; Lander, Eric S; Wirth, Dyann F; Volkman, Sarah K; Sabeti, Pardis C
Section
Research Article
Publication year
2011
Publication date
Apr 2011
Publisher
Public Library of Science
ISSN
15537390
e-ISSN
15537404
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1313598668
Copyright
© 2011 Van Tyne et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Van Tyne D, Park DJ, Schaffner SF, Neafsey DE, Angelino E, et al. (2011) Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in Plasmodium falciparum. PLoS Genet 7(4): e1001383. doi:10.1371/journal.pgen.1001383