[A & I plus PDF only]
COPYRIGHT: © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2013
Abstract
Concentrations of dissolved organic carbon (DOC) in runoff from catchments are often subject to substantial short-term variations. The aim of this study was to identify the compartmental sources of DOC in a forested catchment and the causes for short-term variations in runoff. Furthermore, we investigated the implication of short-term variations for the calculation of annual runoff fluxes. High frequency measurements (30 min intervals) of DOC in runoff, of discharge and groundwater table were conducted for one year in the 4.2 km2 forested Lehstenbach catchment, Germany. Riparian wetland soils represent about 30% of the catchment area. The quality of DOC was investigated by three dimensional fluorescence excitation-emission matrices in samples taken from runoff, deep groundwater and shallow groundwater from the riparian wetland soils. The concentrations of DOC in runoff were highly variable at an hourly to daily time scale, ranging from 2.6 mg L-1 to 34 mg L-1 with an annual average of 9.2 mg L-1 . The concentrations were positively related to discharge, with a counter clockwise hysteresis. Relations of DOC to discharge were steeper and the degree of hysteresis larger in the summer/fall than in the winter/spring period. Dynamics of groundwater table, discharge, DOC concentrations and DOC quality parameters indicated that DOC in runoff originated mainly from the riparian wetland soils, both under low and high flow conditions. The annual export of DOC from the catchment was 84 kg C ha-1 yr-1 when calculated from the high frequency measurements. If the annual export was calculated by simulated samplings of >2 days intervals substantial deviations resulted.
Predicted changes in precipitation and discharge patterns as well as generally increasing temperatures likely will cause raising DOC exports from this catchment.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer