Full Text

Turn on search term navigation

© 2011 Hu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Classification and regression tree (CART) models are tree-based exploratory data analysis methods which have been shown to be very useful in identifying and estimating complex hierarchical relationships in ecological and medical contexts. In this paper, a Bayesian CART model is described and applied to the problem of modelling the cryptosporidiosis infection in Queensland, Australia.

Methodology/Principal Findings

We compared the results of a Bayesian CART model with those obtained using a Bayesian spatial conditional autoregressive (CAR) model. Overall, the analyses indicated that the nature and magnitude of the effect estimates were similar for the two methods in this study, but the CART model more easily accommodated higher order interaction effects.

Conclusions/Significance

A Bayesian CART model for identification and estimation of the spatial distribution of disease risk is useful in monitoring and assessment of infectious diseases prevention and control.

Details

Title
Bayesian Classification and Regression Trees for Predicting Incidence of Cryptosporidiosis
Author
Hu, Wenbiao; O'Leary, Rebecca A; Mengersen, Kerrie; Samantha Low Choy
First page
e23903
Section
Research Article
Publication year
2011
Publication date
Aug 2011
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1318921339
Copyright
© 2011 Hu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.