Full text

Turn on search term navigation

© 2010 Schaller et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Studies have shown that Notch is essential for the maintenance of a T cell Th2 phenotype in vivo. It has also been shown that Notch ligands have diverse functions during T cell activation. We chose to investigate the role of Notch ligands during the Th2 response.

Principal Findings

We studied the relationship of two Notch ligands, delta-like 4 and jagged-1, to T cell proliferation in C57 Bl/6 mice. Our findings indicate that jagged-1 does not affect the rate of T cell proliferation in any subset examined. However, delta-like 4 causes an increase in the expansion of Th2 memory cells and a decrease in effector cell proliferation. Our in vivo studies indicate that the Notch system is dynamically regulated, and that blocking one Notch ligand increases the effective concentration of other Notch ligands, thus altering the response. Examination of genes related to the Notch pathway revealed that the Notch receptors were increased in memory T cells. Expression of BMI1, a gene involved in T cell proliferation, was also higher in memory T cells. Further experiments demonstrated that Notch directly regulates the expression of the BMI1 gene in T cells and may govern T cell proliferation through this pathway.

Conclusions

From these experiments we can make several novel conclusions about the role of Notch ligands in T cell biology. The first is that delta-like 4 suppresses effector cell proliferation and enhances Th2 memory cell proliferation. The second is that blocking one Notch ligand in vivo effectively increases the concentration of other Notch ligands, which can then alter the response.

Details

Title
Delta-Like 4 Differentially Regulates Murine CD4+ T Cell Expansion via BMI1
Author
Schaller, Matthew A; Logue, Hannah; Mukherjee, Sumanta; Lindell, Dennis M; Coelho, Ana Lucia; Lincoln, Pamela; Carson, William F, IV; Ito, Toshihiro; Cavassani, Karen A; Chensue, Stephen W; Hogaboam, Cory M; Lukacs, Nicholas W; Kunkel, Steven L
First page
e12172
Section
Research Article
Publication year
2010
Publication date
Aug 2010
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1318935999
Copyright
© 2010 Schaller et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.