It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Simplified isoperibol calorimetry for thermal testing of dielectric and conducting materials
A simplified isoperibol calorimetry method for measuring specific heat in solids is described. Taking advantage of the classical Nernst dependency the specific heat is calculated from time-domain temperature curves registered for a sample forced heating and natural cooling phase. In order to improve accuracy of the measurements a correction factor, taking into account the heat transferred to the surrounding, is introduced along with a procedure of statistical elimination of unavoidable measurement deviations. The method is implemented in a simple and straightforward measuring system involving no vacuum calorimeter. The method is applicable for quick and routine specific heat measurements performed on small solid dielectric or metallic specimens at near-room temperature. Test results of various materials used commonly in electrical engineering are demonstrated and discussed as well as comparison to drop calorimetry and differential scanning calorimetry reference measurements is included. The overall repeatability of the test method and the simplified apparatus is estimated as not worse than 2.6%.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer