Full text

Turn on search term navigation

© Wen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Innate immunity to viruses involves receptors such as RIG-I, which senses viral RNA and triggers an IFN-β signaling pathway involving the outer mitochondrial membrane protein MAVS. However, the functional status of MAVS phosphorylation remains elusive.

Methodology/Principal Findings

Here we demonstrate for the first time that MAVS undergoes extensive tyrosine phosphorylation upon viral infection, indicating that MAVS phosphorylation might play an important role in MAVS function. A tyrosine-scanning mutational analysis revealed that MAVS tyrosine-9 (Y9) is a phosphorylation site that is required for IFN-β signaling. Indeed, MAVS Y9F mutation severely impaired TRAF3/TRAF6 recruitment and displayed decreased tyrosine phosphorylation in response to VSV infection compared to wild type MAVS. Functionally, MAVS Y9 phosphorylation contributed to MAVS antiviral function without interfering with its apoptosis property.

Conclusions/Significance

These experiments identify a novel residue of MAVS that is crucially involved in the recruitment of TRAF3/TRAF6 and in downstream propagation of MAVS signaling.

Details

Title
Identification of Tyrosine-9 of MAVS as Critical Target for Inducible Phosphorylation That Determines Activation
Author
Wen, Chaoyang; Yan, Zhifeng; Yang, Xiaoli; Guan, Kai; Xu, Changzhi; Song, Ting; Zheng, Zirui; Wang, Wenjun; Wang, Ying; Zhao, Man; Zhang, Yanhong; Xu, Tao; Dou, Jianping; Liu, Jingmei; Xu, Quanbin; He, Xiang; Wei, Congwen; Zhong, Hui
First page
e41687
Section
Research Article
Publication year
2012
Publication date
Jul 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1325521411
Copyright
© Wen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.