Full text

Turn on search term navigation

© 2012 Sabree et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Honey bees (Apis mellifera) are important in crop pollination and honey production worldwide, and have been subject to abrupt declines in recent years [1]. The causes of these losses are not yet entirely clear. One element of honey bee biology likely to be important to their health is the distinctive bacterial microbiota living in the guts of adult workers. In animals generally, more and more findings are revealing critical roles of the gut community, including protection against infectious diseases and enhancement of nutrition [2]–[4]. A critical role of the honey bee gut microbiota seems especially likely because the same set of clusters, each consisting of phylogenetically close members, recur in honey bees worldwide and comprise the majority of bacteria in each adult worker, based on studies using a variety of non-culture-based methods for examining community profiles ([5]–[11]; Table 1). The dominant, recurring honey bee-associated clusters are: “Gamma-1” and “Gamma-2” (Gammaproteobacteria), “Beta” (Betaproteobacteria), “Alpha-1” and “Alpha-2” (Alphaproteobacteria), “Bifido” (Actinobacteria) and “Firm-4” and “Firm-5” (Firmicutes) [9]. Full-length 16S rRNA sequences that fall within these clusters form tight clades mostly showing >97% sequence identity; hereafter, for simplicity, we refer to these as “species” or “species groups”, although they may contain multiple closely related species or “strains.” Of the eight species groups that dominate honey bee guts, five have been found only in Apis (honey bees and close relatives), and two are exclusively found in Apis species and in the related genus Bombus (bumblebees) [6], [9], [12]. Recent experiments on bumblebees have provided preliminary evidence that one or more of these bacterial species can prevent infection by protozoan parasites [12], raising the possibility that similar protective functions might occur in honey bees.

Details

Title
Independent Studies Using Deep Sequencing Resolve the Same Set of Core Bacterial Species Dominating Gut Communities of Honey Bees
Author
Sabree, Zakee L; Hansen, Allison K; Moran, Nancy A
First page
e41250
Section
Research Article
Publication year
2012
Publication date
Jul 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1326219430
Copyright
© 2012 Sabree et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.