Full text

Turn on search term navigation

© Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Xylan is one of the most abundant biopolymers on Earth. Its degradation is mediated primarily by microbial xylanase in nature. To explore the diversity and distribution patterns of xylanase genes in soils, samples of five soil types with different physicochemical characters were analyzed.

Methodology/Principal Findings

Partial xylanase genes of glycoside hydrolase (GH) family 10 were recovered following direct DNA extraction from soil, PCR amplification and cloning. Combined with our previous study, a total of 1084 gene fragments were obtained, representing 366 OTUs. More than half of the OTUs were novel (identities of <65% with known xylanases) and had no close relatives based on phylogenetic analyses. Xylanase genes from all the soil environments were mainly distributed in Bacteroidetes, Proteobacteria, Acidobacteria, Firmicutes, Actinobacteria, Dictyoglomi and some fungi. Although identical sequences were found in several sites, habitat-specific patterns appeared to be important, and geochemical factors such as pH and oxygen content significantly influenced the compositions of xylan-degrading microbial communities.

Conclusion/Significance

These results provide insight into the GH 10 xylanases in various soil environments and reveal that xylan-degrading microbial communities are environment specific with diverse and abundant populations.

Details

Title
Phylogenetic Diversity and Environment-Specific Distributions of Glycosyl Hydrolase Family 10 Xylanases in Geographically Distant Soils
Author
Wang, Guozeng; Meng, Kun; Luo, Huiying; Wang, Yaru; Huang, Huoqing; Shi, Pengjun; Yang, Peilong; Zhang, Zhifang; Yao, Bin
First page
e43480
Section
Research Article
Publication year
2012
Publication date
Aug 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1326252124
Copyright
© Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.