Full Text

Turn on search term navigation

© Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Clonal growth allows plants to spread horizontally and to establish ramets in sites of contrasting resource status. If ramets remain physiologically integrated, clones in heterogeneous environments can act as cooperative systems – effects of stress on one ramet can be ameliorated by another connected ramet inhabiting benign conditions. But little is known about the effects of patch contrast on physiological integration of clonal plants and no study has addressed its effects on physiological traits like osmolytes, reactive oxygen intermediates and antioxidant enzymes. We examined the effect of physiological integration on survival, growth and stress indicators such as osmolytes, reactive oxygen intermediates (ROIs) and antioxidant enzymes in a clonal plant, Fragaria orientalis, growing in homogenous and heterogeneous environments differing in patch contrast of water availability (1 homogeneous (no contrast) group; 2 low contrast group; 3 high contrast group). Drought stress markedly reduced the survival and growth of the severed ramets of F. orientalis, especially in high contrast treatments. Support from a ramet growing in benign patch considerably reduced drought stress and enhanced growth of ramets in dry patches. The larger the contrast between water availability, the larger the amount of support the depending ramet received from the supporting one. This support strongly affected the growth of the supporting ramet, but not to an extent to cause increase in stress indicators. We also found indication of costs related to maintenance of physiological connection between ramets. Thus, the net benefit of physiological integration depends on the environment and integration between ramets of F. orientalis could be advantageous only in heterogeneous conditions with a high contrast.

Details

Title
Physiological Integration Ameliorates Negative Effects of Drought Stress in the Clonal Herb Fragaria orientalis
Author
Zhang, Yunchun; Zhang, Qiaoying; Sammul, Marek
First page
e44221
Section
Research Article
Publication year
2012
Publication date
Sep 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1326546115
Copyright
© Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.