Full text

Turn on search term navigation

© Patrawalla et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rationale

Identification and characterization of asthma phenotypes are challenging due to disease complexity and heterogeneity. The Severe Asthma Research Program (SARP) used unsupervised cluster analysis to define 5 phenotypically distinct asthma clusters that they replicated using 3 variables in a simplified algorithm. We evaluated whether this simplified SARP algorithm could be used in a separate and diverse urban asthma population to recreate these 5 phenotypic clusters.

Methods

The SARP simplified algorithm was applied to adults with asthma recruited to the New York University/Bellevue Asthma Registry (NYUBAR) to classify patients into five groups. The clinical phenotypes were summarized and compared.

Results

Asthma subjects in NYUBAR (n = 471) were predominantly women (70%) and Hispanic (57%), which were demographically different from the SARP population. The clinical phenotypes of the five groups generated by the simplified SARP algorithm were distinct across groups and distributed similarly to those described for the SARP population. Groups 1 and 2 (6 and 63%, respectively) had predominantly childhood onset atopic asthma. Groups 4 and 5 (20%) were older, with the longest duration of asthma, increased symptoms and exacerbations. Group 4 subjects were the most atopic and had the highest peripheral eosinophils. Group 3 (10%) had the least atopy, but included older obese women with adult-onset asthma, and increased exacerbations.

Conclusions

Application of the simplified SARP algorithm to the NYUBAR yielded groups that were phenotypically distinct and useful to characterize disease heterogeneity. Differences across NYUBAR groups support phenotypic variation and support the use of the simplified SARP algorithm for classification of asthma phenotypes in future prospective studies to investigate treatment and outcome differences between these distinct groups.

Trial Registration

Clinicaltrials.gov NCT00212537

Details

Title
Application of the Asthma Phenotype Algorithm from the Severe Asthma Research Program to an Urban Population
Author
Patrawalla, Paru; Kazeros, Angeliki; Rogers, Linda; Shao, Yongzhao; Liu, Mengling; Fernandez-Beros, Maria-Elena; Shang, Shulian; Reibman, Joan
First page
e44540
Section
Research Article
Publication year
2012
Publication date
Sep 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1326546273
Copyright
© Patrawalla et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.