Full text

Turn on search term navigation

© Ando et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Positron Emission Tomography (PET) measurement was applied to the brain of the common marmoset, a small primate species, treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The marmoset shows prominent Parkinson’s disease (PD) signs due to dopaminergic neural degeneration. Recently, the transgenic marmoset (TG) carrying human PD genes is developing. For phenotypic evaluations of TG, non-invasive PET measurement is considered to be substantially significant. As a reference control for TG, the brain of the MPTP-marmoset as an established and valid model was scanned by PET. Behavioral analysis was also performed by recording locomotion of the MPTP-marmoset, as an objective measure of PD signs.

Methodology/Principal Findings

Marmosets received several MPTP regimens (single MPTP regimen: 2 mg/kg, s.c., per day for 3 consecutive days) were used for PET measurement and behavioral observation. To measure immobility as a central PD sign, locomotion of marmosets in their individual living cages were recorded daily by infrared sensors. Daily locomotion counts decreased drastically after MPTP regimens and remained diminished for several months or more. PET scan of the brain, using [11C]PE2I as a ligand of the dopamine (DA) transporter, was performed once several months after the last MPTP regimen. The mean binding potential (BPND) in the striatum (putamen and caudate) of the MPTP-marmoset group was significantly lower than that of the MPTP-free control group (n = 5 for each group). In the MPTP-marmosets, the decrease of BPND in the striatum closely correlated with the decrease in locomotion counts (r = 0.98 in putamen and 0.91 in caudate).

Conclusion/Significance

The present characterization of neural degeneration using non-invasive PET imaging and of behavioral manifestation in the MPTP marmoset mimics typical PD characteristics and can be useful in evaluating the phenotype of TG marmosets being developed.

Details

Title
PET Analysis of Dopaminergic Neurodegeneration in Relation to Immobility in the MPTP-Treated Common Marmoset, a Model for Parkinson’s Disease
Author
Ando, Kiyoshi; Obayashi, Shigeru; Nagai, Yuji; Oh-Nishi, Arata; Minamimoto, Takafumi; Higuchi, Makoto; Inoue, Takashi; Itoh, Toshio; Suhara, Tetsuya
First page
e46371
Section
Research Article
Publication year
2012
Publication date
Oct 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1326551566
Copyright
© Ando et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.