Full Text

Turn on search term navigation

© 2012 Long et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

In recent years, neuroimaging has been increasingly used as an objective method for the diagnosis of Parkinson's disease (PD). Most previous studies were based on invasive imaging modalities or on a single modality which was not an ideal diagnostic tool. In this study, we developed a non-invasive technology intended for use in the diagnosis of early PD by integrating the advantages of various modals.

Materials and Methods

Nineteen early PD patients and twenty-seven normal volunteers participated in this study. For each subject, we collected resting-state functional magnetic resonance imaging (rsfMRI) and structural images. For the rsfMRI images, we extracted the characteristics at three different levels: ALFF (amplitude of low-frequency fluctuations), ReHo (regional homogeneity) and RFCS (regional functional connectivity strength). For the structural images, we extracted the volume characteristics from the gray matter (GM), the white matter (WM) and the cerebrospinal fluid (CSF). A two-sample t-test was used for the feature selection, and then the remaining features were fused for classification. Finally a classifier for early PD patients and normal control subjects was identified from support vector machine training. The performance of the classifier was evaluated using the leave-one-out cross-validation method.

Results

Using the proposed methods to classify the data set, good results (accuracy  = 86.96%, sensitivity  = 78.95%, specificity  = 92.59%) were obtained.

Conclusions

This method demonstrates a promising diagnosis performance by the integration of information from a variety of imaging modalities, and it shows potential for improving the clinical diagnosis and treatment of PD.

Details

Title
Automatic Classification of Early Parkinson's Disease with Multi-Modal MR Imaging
Author
Long, Dan; Wang, Jinwei; Min, Xuan; Gu, Quanquan; Xu, Xiaojun; Kong, Dexing; Zhang, Minming
First page
e47714
Section
Research Article
Publication year
2012
Publication date
Nov 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1326725192
Copyright
© 2012 Long et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.