Full text

Turn on search term navigation

© 2012 Regazzetti et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

REDD1 (Regulated in development and DNA damage response 1) is a hypoxia and stress response gene and is a negative regulator of mTORC1. Since mTORC1 is involved in the negative feedback loop of insulin signaling, we have studied the role of REDD1 on insulin signaling pathway and its regulation by insulin. In human and murine adipocytes, insulin transiently stimulates REDD1 expression through a MEK dependent pathway. In HEK-293 cells, expression of a constitutive active form of MEK stabilizes REDD1 and protects REDD1 from proteasomal degradation mediated by CUL4A-DDB1 ubiquitin ligase complex. In 3T3-L1 adipocytes, silencing of REDD1 with siRNA induces an increase of mTORC1 activity as well as an inhibition of insulin signaling pathway and lipogenesis. Rapamycin, a mTORC1 inhibitor, restores the insulin signaling after downregulation of REDD1 expression. This observation suggests that REDD1 positively regulates insulin signaling through the inhibition of mTORC1 activity. In conclusion, our results demonstrate that insulin increases REDD1 expression, and that REDD1 participates in the biological response to insulin.

Details

Title
Regulated in Development and DNA Damage Responses -1 (REDD1) Protein Contributes to Insulin Signaling Pathway in Adipocytes
Author
Regazzetti, Claire; Dumas, Karine; Yannick Le Marchand-Brustel; Peraldi, Pascal; Tanti, Jean-François; Giorgetti-Peraldi, Sophie
First page
e52154
Section
Research Article
Publication year
2012
Publication date
Dec 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1327176396
Copyright
© 2012 Regazzetti et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.