Full text

Turn on search term navigation

© 2013 Homouz, Kudlicki. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The spatial organization of eukaryotic genomes is thought to play an important role in regulating gene expression. The recent advances in experimental methods including chromatin capture techniques, as well as the large amounts of accumulated gene expression data allow studying the relationship between spatial organization of the genome and co-expression of protein-coding genes. To analyse this genome-wide relationship at a single gene resolution, we combined the interchromosomal DNA contacts in the yeast genome measured by Duan et al. with a comprehensive collection of 1,496 gene expression datasets. We find significant enhancement of co-expression among genes with contact links. The co-expression is most prominent when two gene loci fall within 1,000 base pairs from the observed contact. We also demonstrate an enrichment of inter-chromosomal links between functionally related genes, which suggests that the non random nature of the genome organization serves to facilitate coordinated transcription in groups of genes.

Details

Title
The 3D Organization of the Yeast Genome Correlates with Co-Expression and Reflects Functional Relations between Genes
Author
Homouz, Dirar; Kudlicki, Andrzej S
First page
e54699
Section
Research Article
Publication year
2013
Publication date
Jan 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1327963578
Copyright
© 2013 Homouz, Kudlicki. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.