Full Text

Turn on search term navigation

© 2013 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

MicroRNAs (miRNAs) are non-coding small RNAs that have cell type and cell context-dependent expression and function. To study miRNAs at single-cell resolution, we have developed a novel microfluidic approach, where flow fluorescent in situ hybridization (flow-FISH) using locked-nucleic acid probes is combined with rolling circle amplification to detect the presence and localization of miRNA. Furthermore, our flow cytometry approach allows analysis of gene-products potentially targeted by miRNA together with the miRNA in the same cells. We demonstrate simultaneous measurement of miR155 and CD69 in 12-O-tetradecanoylphorbol 13-acetate (PMA) and Ionomycin stimulated Jurkat cells. The flow-FISH method can be completed in ∼10 h, utilizes only 170 nL of reagent per experimental condition, and is the first to directly detect miRNA in single cells using flow cytometry.

Details

Title
Single Cell MicroRNA Analysis Using Microfluidic Flow Cytometry
Author
Wu, Meiye; Piccini, Matthew; Chung-Yan, Koh; Lam, Kit S; Singh, Anup K
First page
e55044
Section
Research Article
Publication year
2013
Publication date
Jan 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1327979782
Copyright
© 2013 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.