It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: 325
Abstract
Background: High throughput 'omics' experiments are usually designed to compare changes observed between different conditions (or interventions) and to identify biomarkers capable of characterizing each condition. We consider the complex structure of repeated measurements from different assays where different conditions are applied on the same subjects.
Results: We propose a two-step analysis combining a multilevel approach and a multivariate approach to reveal separately the effects of conditions within subjects from the biological variation between subjects. The approach is extended to two-factor designs and to the integration of two matched data sets. It allows internal variable selection to highlight genes able to discriminate the net condition effect within subjects. A simulation study was performed to demonstrate the good performance of the multilevel multivariate approach compared to a classical multivariate method. The multilevel multivariate approach outperformed the classical multivariate approach with respect to the classification error rate and the selection of relevant genes. The approach was applied to an HIV-vaccine trial evaluating the response with gene expression and cytokine secretion. The discriminant multilevel analysis selected a relevant subset of genes while the integrative multilevel analysis highlighted clusters of genes and cytokines that were highly correlated across the samples.
Conclusions: Our combined multilevel multivariate approach may help in finding signatures of vaccine effect and allows for a better understanding of immunological mechanisms activated by the intervention. The integrative analysis revealed clusters of genes, that were associated with cytokine secretion. These clusters can be seen as gene signatures to predict future cytokine response. The approach is implemented in the R package mixOmics (http://cran.r-project.org/ ) with associated tutorials to perform the analysisa .
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer