It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper addresses a vehicle sequencing problem for adjacent intersections under the framework of Autonomous Intersection Management (AIM). In the context of AIM, autonomous vehicles are considered to be independent individuals and the traffic control aims at deciding on an efficient vehicle passing sequence. Since there are considerable vehicle passing combinations, how to find an efficient vehicle passing sequence in a short time becomes a big challenge, especially for more than one intersection. In this paper, we present a technique for combining certain vehicles into some basic groups with reference to some properties discussed in our earlier works. A genetic algorithm based on these basic groups is designed to find an optimal or a near-optimal vehicle passing sequence for each intersection. Computational experiments verify that the proposed genetic algorithms can response quickly for several intersections. Simulations with continuous vehicles are carried out with application of the proposed algorithm or existing traffic control methods. The results show that the traffic condition can be significantly improved by our algorithm.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer