Full text

Turn on search term navigation

© 2012 Tebbenkamp et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

N-terminal fragments of mutant huntingtin (htt) that terminate between residues 90–115, termed cleavage product A or 1 (cp-A/1), form intracellular and intranuclear inclusion bodies in the brains of patients with Huntington's disease (HD). These fragments appear to be proteolytic products of the full-length protein. Here, we use an HEK293 cell culture model to investigate huntingtin proteolytic processing; previous studies of these cells have demonstrated cleavage of htt to cp-A/1 like htt fragments.

Results

Recombinant N-terminal htt fragments, terminating at residue 171 (also referred to as cp-B/2 like), were efficiently cleaved to produce cp-A/1 whereas fragments representing endogenous caspase, calpain, and metalloproteinase cleavage products, terminating between residues 400–600, were inefficiently cleaved. Using cysteine-labeling techniques and antibody binding mapping, we localized the C-terminus of the cp-A/1 fragments produced by HEK293 cells to sequences minimally limited by cysteine 105 and an antibody epitope composed of residues 115–124. A combination of genetic and pharmacologic approaches to inhibit potential proteases, including γ-secretase and calpain, proved ineffective in preventing production of cp-A/1.

Conclusions

Our findings indicate that HEK293 cells express a protease that is capable of efficiently cleaving cp-B/2 like fragments of htt with normal or expanded glutamine repeats. For reasons that remain unclear, this protease cleaves longer htt fragments, with normal or expanded glutamine expansions, much less efficiently. The protease in HEK293 cells that is capable of generating a cp-A/1 like htt fragment may be a novel protease with a high preference for a cp-B/2-like htt fragment as substrate.

Details

Title
Analysis of Proteolytic Processes and Enzymatic Activities in the Generation of Huntingtin N-Terminal Fragments in an HEK293 Cell Model
Author
Tebbenkamp, Andrew T N; Crosby, Keith W; Siemienski, Zoe B; Brown, Hilda H; Golde, Todd E; Borchelt, David R
First page
e50750
Section
Research Article
Publication year
2012
Publication date
Dec 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1339064791
Copyright
© 2012 Tebbenkamp et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.