Full text

Turn on search term navigation

© 2013 Rath et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Effectiveness of ART regimens strongly depends upon complex interactions between the selective pressure of drugs and the evolution of mutations that allow or restrict drug resistance.

Methods

Four clinical isolates from NRTI-exposed, NNRTI-naive subjects were passaged in increasing concentrations of NVP in combination with 1 µM 3 TC and 2 µM ADV to assess selective pressures of multi-drug treatment. A novel parameter inference procedure, based on a stochastic viral growth model, was used to estimate phenotypic resistance and fitness from in vitro combination passage experiments.

Results

Newly developed mathematical methods estimated key phenotypic parameters of mutations arising through selective pressure exerted by 3 TC and NVP. Concentrations of 1 µM 3 TC maintained the M184V mutation, which was associated with intrinsic fitness deficits. Increasing NVP concentrations selected major NNRTI resistance mutations. The evolutionary pathway of NVP resistance was highly dependent on the viral genetic background, epistasis as well as stochasticity. Parameter estimation indicated that the previously unrecognized mutation L228Q was associated with NVP resistance in some isolates.

Conclusion

Serial passage of viruses in the presence of multiple drugs may resemble the selection of mutations observed among treated individuals and populations in vivo and indicate evolutionary preferences and restrictions. Phenotypic resistance estimated here “in silico” from in vitro passage experiments agreed well with previous knowledge, suggesting that the unique combination of “wet-” and “dry-lab” experimentation may improve our understanding of HIV-1 resistance evolution in the future.

Details

Title
In Vitro HIV-1 Evolution in Response to Triple Reverse Transcriptase Inhibitors & In Silico Phenotypic Analysis
Author
Rath, Barbara A; Kaveh Pouran Yousef; Katzenstein, David K; Shafer, Robert W; Schütte, Christof; Max von Kleist; Merigan, Thomas C
First page
e61102
Section
Research Article
Publication year
2013
Publication date
Apr 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1343544560
Copyright
© 2013 Rath et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.