Full text

Turn on search term navigation

© 2012 Kaufhold et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Objective

To evaluate 3D spectral domain optical coherence tomography (SDOCT) volume scans as a tool for quantification of optic nerve head (ONH) volume as a potential marker for treatment effectiveness and disease progression in idiopathic intracranial hypertension (IIH).

Design and Patients

Cross-sectional pilot trial comparing 19 IIH patients and controls matched for gender, age and body mass index. Each participant underwent SDOCT. A custom segmentation algorithm was developed to quantify ONH volume (ONHV) and height (ONHH) in 3D volume scans.

Results

Whereas peripapillary retinal nerve fiber layer thickness did not show differences between controls and IIH patients, the newly developed 3D parameters ONHV and ONHH were able to discriminate between controls, treated and untreated patients. Both ONHV and ONHH measures were related to levels of intracranial pressure (ICP).

Conclusion

Our findings suggest 3D ONH measures as assessed by SDOCT as potential diagnostic and progression markers in IIH and other disorders with increased ICP. SDOCT may promise a fast and easy diagnostic alternative to repeated lumbar punctures and could therefore ease monitoring of treatment or disease progression.

Details

Title
Optic Nerve Head Quantification in Idiopathic Intracranial Hypertension by Spectral Domain OCT
Author
Kaufhold, Falko; Kadas, Ella Maria; Schmidt, Christoph; Kunte, Hagen; Hoffmann, Jan; Zimmermann, Hanna; Timm Oberwahrenbrock; Harms, Lutz; Polthier, Konrad; Brandt, Alexander U; Friedemann, Paul
First page
e36965
Section
Research Article
Publication year
2012
Publication date
May 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1344321225
Copyright
© 2012 Kaufhold et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.